hive中使用标准sql实现分组内排序 在hive中,想要实现分组内排序,一般都是自己写udf实现oracle中分析函数row_number() over(partition)的功能,如果不使用自定义udf,仅使用标准sql实现的话,毫无性能可言,仅做实验而已。 方便起见,以下语句为oracle中语句
hive中使用标准sql实现分组内排序
在hive中,想要实现分组内排序,一般都是自己写udf实现oracle中分析函数row_number() over(partition)的功能,如果不使用自定义udf,仅使用标准sql实现的话,毫无性能可言,仅做实验而已。
方便起见,以下语句为oracle中语句,但都属于标准sql,在hive中亦可:
Sql代码
CREATE TABLE lxw_t (user_id VARCHAR2(20),
class VARCHAR2(20),
score NUMBER
);
Sql代码
INSERT INTO liuxiaowen.lxw_t VALUES ('user_1','语文','90');
INSERT INTO liuxiaowen.lxw_t VALUES ('user_1','数学','86');
INSERT INTO liuxiaowen.lxw_t VALUES ('user_1','英语','96');
INSERT INTO liuxiaowen.lxw_t VALUES ('user_1','体育','77');
INSERT INTO liuxiaowen.lxw_t VALUES ('user_2','语文','88');
INSERT INTO liuxiaowen.lxw_t VALUES ('user_2','数学','65');
INSERT INTO liuxiaowen.lxw_t VALUES ('user_2','英语','67');
INSERT INTO liuxiaowen.lxw_t VALUES ('user_2','体育','98');
commit;
Sql代码
SELECT x.user_id,x.class,x.score,COUNT(1) AS seq
FROM (
SELECT a.*,b.score score2 FROM
liuxiaowen.lxw_t a ,
liuxiaowen.lxw_t b
WHERE a.user_id = b.user_id (+)
) x
WHERE x.score2 >= x.score --按照成绩由高到低排列
--WHERE x.score >= x.score2 --按照成绩由低到高排列
GROUP BY x.user_id,x.class,x.score
order BY 1,4
按照成绩由高到低排列的结果如下:
Sql代码
USER_ID CLASS SCORE SEQ
user_1 英语 96 1
user_1 语文 90 2
user_1 数学 86 3
user_1 体育 77 4
user_2 体育 98 1
user_2 语文 88 2
user_2 英语 67 3
user_2 数学 65 4
按照成绩由低到高排列的结果如下:
Sql代码
USER_ID CLASS SCORE SEQ
user_1 体育 77 1
user_1 数学 86 2
user_1 语文 90 3
user_1 英语 96 4
user_2 数学 65 1
user_2 英语 67 2
user_2 语文 88 3
user_2 体育 98 4

TograntpermissionstonewMySQLusers,followthesesteps:1)AccessMySQLasauserwithsufficientprivileges,2)CreateanewuserwiththeCREATEUSERcommand,3)UsetheGRANTcommandtospecifypermissionslikeSELECT,INSERT,UPDATE,orALLPRIVILEGESonspecificdatabasesortables,and4)

ToaddusersinMySQLeffectivelyandsecurely,followthesesteps:1)UsetheCREATEUSERstatementtoaddanewuser,specifyingthehostandastrongpassword.2)GrantnecessaryprivilegesusingtheGRANTstatement,adheringtotheprincipleofleastprivilege.3)Implementsecuritymeasuresl

ToaddanewuserwithcomplexpermissionsinMySQL,followthesesteps:1)CreatetheuserwithCREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';.2)Grantreadaccesstoalltablesin'mydatabase'withGRANTSELECTONmydatabase.TO'newuser'@'localhost';.3)Grantwriteaccessto'

The string data types in MySQL include CHAR, VARCHAR, BINARY, VARBINARY, BLOB, and TEXT. The collations determine the comparison and sorting of strings. 1.CHAR is suitable for fixed-length strings, VARCHAR is suitable for variable-length strings. 2.BINARY and VARBINARY are used for binary data, and BLOB and TEXT are used for large object data. 3. Sorting rules such as utf8mb4_unicode_ci ignores upper and lower case and is suitable for user names; utf8mb4_bin is case sensitive and is suitable for fields that require precise comparison.

The best MySQLVARCHAR column length selection should be based on data analysis, consider future growth, evaluate performance impacts, and character set requirements. 1) Analyze the data to determine typical lengths; 2) Reserve future expansion space; 3) Pay attention to the impact of large lengths on performance; 4) Consider the impact of character sets on storage. Through these steps, the efficiency and scalability of the database can be optimized.

MySQLBLOBshavelimits:TINYBLOB(255bytes),BLOB(65,535bytes),MEDIUMBLOB(16,777,215bytes),andLONGBLOB(4,294,967,295bytes).TouseBLOBseffectively:1)ConsiderperformanceimpactsandstorelargeBLOBsexternally;2)Managebackupsandreplicationcarefully;3)Usepathsinst

The best tools and technologies for automating the creation of users in MySQL include: 1. MySQLWorkbench, suitable for small to medium-sized environments, easy to use but high resource consumption; 2. Ansible, suitable for multi-server environments, simple but steep learning curve; 3. Custom Python scripts, flexible but need to ensure script security; 4. Puppet and Chef, suitable for large-scale environments, complex but scalable. Scale, learning curve and integration needs should be considered when choosing.

Yes,youcansearchinsideaBLOBinMySQLusingspecifictechniques.1)ConverttheBLOBtoaUTF-8stringwithCONVERTfunctionandsearchusingLIKE.2)ForcompressedBLOBs,useUNCOMPRESSbeforeconversion.3)Considerperformanceimpactsanddataencoding.4)Forcomplexdata,externalproc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
