MySQL 有一个和优秀的语法 create table ... like , 可以快速复制一张表,创建其副本。 PostgreSQL 也有类似的语法,而且更加灵活,不过要注意些细节。 先来看看MySQL 语法: create table ... like 原始表T1,结构如下: +----------+------------------+-
MySQL 有一个和优秀的语法 create table ... like , 可以快速复制一张表,创建其副本。 PostgreSQL 也有类似的语法,而且更加灵活,不过要注意些细节。
先来看看MySQL 语法: create table ... like
原始表T1,结构如下:
+----------+------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +----------+------------------+------+-----+---------+----------------+ | id | int(10) unsigned | NO | PRI | NULL | auto_increment | | log_time | datetime(6) | YES | | NULL | | +----------+------------------+------+-----+---------+----------------+
快速做一张副本:
mysql> create table t2 like t1; Query OK, 0 rows affected (0.03 sec)
这时会有一张相同的副本表快速产生:
+----------+------------------+------+-----+---------+----------------+ | Field | Type | Null | Key | Default | Extra | +----------+------------------+------+-----+---------+----------------+ | id | int(10) unsigned | NO | PRI | NULL | auto_increment | | log_time | datetime(6) | YES | | NULL | | +----------+------------------+------+-----+---------+----------------+
这时注意到,这里用到自增字段作为主键,不过MySQL 这类语法不会沿用原始表的自增位置,还是从头开始。不过这点说起来难免搞笑,因为MySQL没有单独的序列。
mysql> insert into t2 (log_time) select now(); Query OK, 1 row affected (0.00 sec) Records: 1 Duplicates: 0 Warnings: 0 mysql> select * from t2; +----+----------------------------+ | id | log_time | +----+----------------------------+ | 1 | 2014-11-27 13:44:12.000000 | +----+----------------------------+ 1 row in set (0.00 sec)
现在来看下PostgreSQL:
原始表结构如下, 包含了一个序列作为主键。
Table "ytt_sql.t1" Column | Type | Modifiers ----------+-----------------------------+------------------------------------------------- id | integer | not null default nextval('t1_id_seq'::regclass) log_time | timestamp without time zone | Indexes: "t1_pkey" PRIMARY KEY, btree (id)
用类似的语法create table ... like 来创建副本:
t_girl=# create table t2 (like t1 including all); CREATE TABLE Time: 50.035 ms
副本的表结构如下,不过可能发现了一个问题,连同原始表的序列也一起弄过来了,这个太不安全了。
Table "ytt_sql.t2" Column | Type | Modifiers ----------+-----------------------------+------------------------------------------------- id | integer | not null default nextval('t1_id_seq'::regclass) log_time | timestamp without time zone | Indexes: "t2_pkey" PRIMARY KEY, btree (id)
而此时查看到这个序列的指针已经是120了,那么副本表的记录不是要从120开始?而且副本表的插入或者其他写入操作都会影响原始表!
t_girl=# select currval('t1_id_seq'); currval --------- 120 (1 row) Time: 3.771 ms
所以这时重新创建一个新的序列给副本表专用:
t_girl=# create sequence t2_id_seq; CREATE SEQUENCE Time: 12.744 ms
更新这列的默认值。
t_girl=# alter table t2 alter id set default nextval('t2_id_seq'); ALTER TABLE Time: 5.002 ms
这时候插入些记录看看:
t_girl=# insert into t2 (log_time) values ....; INSERT 0 10 Time: 10.331 ms
这时记录从1开始了:
t_girl=# select * from t2; id | log_time ----+---------------------------- 1 | 2014-03-09 06:49:14.393962 2 | 2005-12-30 05:49:14.393962 3 | 2014-05-17 20:49:14.393962 4 | 2004-06-15 22:49:14.393962 5 | 2010-06-19 03:49:14.393962 ... 10 | 2009-09-07 23:49:14.393962 (10 rows) Time: 4.958 ms
不过我这里LIKE了所有选项,也可以不不包括默认值,这样,序列本身就不会复制进来了。
t_girl=# create table t2 (like t1 including all excluding defaults); CREATE TABLE Time: 40.292 ms
Table "ytt_sql.t2" Column | Type | Modifiers ----------+-----------------------------+----------- id | integer | not null log_time | timestamp without time zone | Indexes: "t2_pkey" PRIMARY KEY, btree (id)
这里也可以不用LIKE 选项,直接用类似CREATE TABLE AS ...语法,如下:
创建没有记录的空表,但是这里只包含了表结构以及字段相关。
t_girl=# create table t2 as table t1 with no data; SELECT 0 Time: 15.562 ms 或者 t_girl=# create table t2 as select * from t1 where false; SELECT 0 Time: 14.181 ms
我们手动给添加主键以及默认值。
t_girl=# alter table t2 add constraint pk_t2_id primary key (id), alter id set default nextval('t2_id_seq'); ALTER TABLE Time: 41.105 ms
结构跟原来一样了。
Table "ytt_sql.t2" Column | Type | Modifiers ----------+-----------------------------+------------------------------------------------- id | integer | not null default nextval('t2_id_seq'::regclass) log_time | timestamp without time zone | Indexes: "pk_t2_id" PRIMARY KEY, btree (id)

TograntpermissionstonewMySQLusers,followthesesteps:1)AccessMySQLasauserwithsufficientprivileges,2)CreateanewuserwiththeCREATEUSERcommand,3)UsetheGRANTcommandtospecifypermissionslikeSELECT,INSERT,UPDATE,orALLPRIVILEGESonspecificdatabasesortables,and4)

ToaddusersinMySQLeffectivelyandsecurely,followthesesteps:1)UsetheCREATEUSERstatementtoaddanewuser,specifyingthehostandastrongpassword.2)GrantnecessaryprivilegesusingtheGRANTstatement,adheringtotheprincipleofleastprivilege.3)Implementsecuritymeasuresl

ToaddanewuserwithcomplexpermissionsinMySQL,followthesesteps:1)CreatetheuserwithCREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';.2)Grantreadaccesstoalltablesin'mydatabase'withGRANTSELECTONmydatabase.TO'newuser'@'localhost';.3)Grantwriteaccessto'

The string data types in MySQL include CHAR, VARCHAR, BINARY, VARBINARY, BLOB, and TEXT. The collations determine the comparison and sorting of strings. 1.CHAR is suitable for fixed-length strings, VARCHAR is suitable for variable-length strings. 2.BINARY and VARBINARY are used for binary data, and BLOB and TEXT are used for large object data. 3. Sorting rules such as utf8mb4_unicode_ci ignores upper and lower case and is suitable for user names; utf8mb4_bin is case sensitive and is suitable for fields that require precise comparison.

The best MySQLVARCHAR column length selection should be based on data analysis, consider future growth, evaluate performance impacts, and character set requirements. 1) Analyze the data to determine typical lengths; 2) Reserve future expansion space; 3) Pay attention to the impact of large lengths on performance; 4) Consider the impact of character sets on storage. Through these steps, the efficiency and scalability of the database can be optimized.

MySQLBLOBshavelimits:TINYBLOB(255bytes),BLOB(65,535bytes),MEDIUMBLOB(16,777,215bytes),andLONGBLOB(4,294,967,295bytes).TouseBLOBseffectively:1)ConsiderperformanceimpactsandstorelargeBLOBsexternally;2)Managebackupsandreplicationcarefully;3)Usepathsinst

The best tools and technologies for automating the creation of users in MySQL include: 1. MySQLWorkbench, suitable for small to medium-sized environments, easy to use but high resource consumption; 2. Ansible, suitable for multi-server environments, simple but steep learning curve; 3. Custom Python scripts, flexible but need to ensure script security; 4. Puppet and Chef, suitable for large-scale environments, complex but scalable. Scale, learning curve and integration needs should be considered when choosing.

Yes,youcansearchinsideaBLOBinMySQLusingspecifictechniques.1)ConverttheBLOBtoaUTF-8stringwithCONVERTfunctionandsearchusingLIKE.2)ForcompressedBLOBs,useUNCOMPRESSbeforeconversion.3)Considerperformanceimpactsanddataencoding.4)Forcomplexdata,externalproc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 Linux new version
SublimeText3 Linux latest version
