这里我来演示下在POSTGRESQL里面如何实现交叉表的展示,至于什么是交叉表,我就不多说了,度娘去哦。 原始表数据如下: t_girl=#select*fromscore;name|subject|score-------+---------+-------Lucy|English|100Lucy|Physics|90Lucy|Math|85Lily|English|95L
这里我来演示下在POSTGRESQL里面如何实现交叉表的展示,至于什么是交叉表,我就不多说了,度娘去哦。
原始表数据如下:
t_girl=# select * from score; name | subject | score -------+---------+------- Lucy | English | 100 Lucy | Physics | 90 Lucy | Math | 85 Lily | English | 95 Lily | Physics | 81 Lily | Math | 84 David | English | 100 David | Physics | 86 David | Math | 89 Simon | English | 90 Simon | Physics | 76 Simon | Math | 79 (12 rows) Time: 2.066 ms
想要实现以下的结果:
name | English | Physics | Math -------+---------+---------+------ Simon | 90 | 76 | 79 Lucy | 100 | 90 | 85 Lily | 95 | 81 | 84 David | 100 | 86 | 89
大致有以下几种方法:
1、用标准SQL展现出来
t_girl=# select name, t_girl-# sum(case when subject = 'English' then score else 0 end) as "English", t_girl-# sum(case when subject = 'Physics' then score else 0 end) as "Physics", t_girl-# sum(case when subject = 'Math' then score else 0 end) as "Math" t_girl-# from score t_girl-# group by name order by name desc; name | English | Physics | Math -------+---------+---------+------ Simon | 90 | 76 | 79 Lucy | 100 | 90 | 85 Lily | 95 | 81 | 84 David | 100 | 86 | 89 (4 rows) Time: 1.123 ms
2、用PostgreSQL 提供的第三方扩展 tablefunc 带来的函数实现
以下函数crosstab 里面的SQL必须有三个字段,name, 分类以及分类值来作为起始参数,必须以name,分类值作为输出参数。
t_girl=# SELECT * FROM crosstab('select name,subject,score from score order by name desc',$$values ('English'::text),('Physics'::text),('Math'::text)$$) AS score(name text, English int, Physics int, Math int); name | english | physics | math -------+---------+---------+------ Simon | 90 | 76 | 79 Lucy | 100 | 90 | 85 Lily | 95 | 81 | 84 David | 100 | 86 | 89 (4 rows) Time: 2.059 ms
3、用PostgreSQL 自身的聚合函数实现
t_girl=# select name,split_part(split_part(tmp,',',1),':',2) as "English", t_girl-# split_part(split_part(tmp,',',2),':',2) as "Physics", t_girl-# split_part(split_part(tmp,',',3),':',2) as "Math" t_girl-# from t_girl-# ( t_girl(# select name,string_agg(subject||':'||score,',') as tmp from score group by name order by name desc t_girl(# ) as T; name | English | Physics | Math -------+---------+---------+------ Simon | 90 | 76 | 79 Lucy | 100 | 90 | 85 Lily | 95 | 81 | 84 David | 100 | 86 | 89 (4 rows) Time: 2.396 ms
4、 存储函数实现
create or replace function func_ytt_crosstab_py () returns setof ytt_crosstab as $ytt$ for row in plpy.cursor("select name,string_agg(subject||':'||score,',') as tmp from score group by name order by name desc"): a = row['tmp'].split(',') yield (row['name'],a[0].split(':')[1],a[1].split(':')[1],a[2].split(':')[1]) $ytt$ language plpythonu; t_girl=# select name,english,physics,math from func_ytt_crosstab_py(); name | english | physics | math -------+---------+---------+------ Simon | 90 | 76 | 79 Lucy | 100 | 90 | 85 Lily | 95 | 81 | 84 David | 100 | 86 | 89 (4 rows) Time: 2.687 ms
5、 用PLPGSQL来实现
t_girl=# create type ytt_crosstab as (name text, English text, Physics text, Math text); CREATE TYPE Time: 22.518 ms create or replace function func_ytt_crosstab () returns setof ytt_crosstab as $ytt$ declare v_name text := ''; v_english text := ''; v_physics text := ''; v_math text := ''; v_tmp_result text := ''; declare cs1 cursor for select name,string_agg(subject||':'||score,',') from score group by name order by name desc; begin open cs1; loop fetch cs1 into v_name,v_tmp_result; exit when not found; v_english = split_part(split_part(v_tmp_result,',',1),':',2); v_physics = split_part(split_part(v_tmp_result,',',2),':',2); v_math = split_part(split_part(v_tmp_result,',',3),':',2); return query select v_name,v_english,v_physics,v_math; end loop; end; $ytt$ language plpgsql; t_girl=# select name,English,Physics,Math from func_ytt_crosstab(); name | english | physics | math -------+---------+---------+------ Simon | 90 | 76 | 79 Lucy | 100 | 90 | 85 Lily | 95 | 81 | 84 David | 100 | 86 | 89 (4 rows) Time: 2.127 ms

MySQLviewshavelimitations:1)Theydon'tsupportallSQLoperations,restrictingdatamanipulationthroughviewswithjoinsorsubqueries.2)Theycanimpactperformance,especiallywithcomplexqueriesorlargedatasets.3)Viewsdon'tstoredata,potentiallyleadingtooutdatedinforma

ProperusermanagementinMySQLiscrucialforenhancingsecurityandensuringefficientdatabaseoperation.1)UseCREATEUSERtoaddusers,specifyingconnectionsourcewith@'localhost'or@'%'.2)GrantspecificprivilegeswithGRANT,usingleastprivilegeprincipletominimizerisks.3)

MySQLdoesn'timposeahardlimitontriggers,butpracticalfactorsdeterminetheireffectiveuse:1)Serverconfigurationimpactstriggermanagement;2)Complextriggersincreasesystemload;3)Largertablesslowtriggerperformance;4)Highconcurrencycancausetriggercontention;5)M

Yes,it'ssafetostoreBLOBdatainMySQL,butconsiderthesefactors:1)StorageSpace:BLOBscanconsumesignificantspace,potentiallyincreasingcostsandslowingperformance.2)Performance:LargerrowsizesduetoBLOBsmayslowdownqueries.3)BackupandRecovery:Theseprocessescanbe

Adding MySQL users through the PHP web interface can use MySQLi extensions. The steps are as follows: 1. Connect to the MySQL database and use the MySQLi extension. 2. Create a user, use the CREATEUSER statement, and use the PASSWORD() function to encrypt the password. 3. Prevent SQL injection and use the mysqli_real_escape_string() function to process user input. 4. Assign permissions to new users and use the GRANT statement.

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Notepad++7.3.1
Easy-to-use and free code editor
