PostgreSQL 聚合函数共享申请的内存空间
CREATE AGGREGATE Rbitmap_union2 (Rbitmap)( sfunc = myfunction, stype = mytype, FINALFUNC = myfunction_final); 在编写聚合函数时,对每一行都会重复调用指定同一函数,如果要处理的数据是累加的,那么如果不在每次调用之间共享内存空间,而是不停的申
CREATE AGGREGATE Rbitmap_union2 (Rbitmap) ( sfunc = myfunction, stype = mytype, FINALFUNC = myfunction_final );
在编写聚合函数时,对每一行都会重复调用指定同一函数,如果要处理的数据是累加的,那么如果不在每次调用之间共享内存空间,而是不停的申请释放新的内存,那么速度会变得很慢,所以在这时共享内存是十分有用的:
PostgreSQL 有 MemoryContext 的概念,如果普通的使用 palloc 申请内存空间,系统会向 CurrentMemoryContext 申请,而据我试验猜测,聚合函数在每次调用时,都会切换 CurrentMemoryContext,所以普通的 palloc 是不能使用的。
在使用 Version 1 Calling Conventions 时,有如下宏定义, PG_FUNCTION_ARGS 是我们编写函数的实际入参:
#define PG_FUNCTION_ARGS FunctionCallInfo fcinfo
FunctionCallInfo 是指向 FunctionCallInfoData 结构的指针:
/* * This struct is the data actually passed to an fmgr-called function. */ typedef struct FunctionCallInfoData { FmgrInfo *flinfo; /* ptr to lookup info used for this call */ fmNodePtr context; /* pass info about context of call */ fmNodePtr resultinfo; /* pass or return extra info about result */ Oid fncollation; /* collation for function to use */ bool isnull; /* function must set true if result is NULL */ short nargs; /* # arguments actually passed */ Datum arg[FUNC_MAX_ARGS]; /* Arguments passed to function */ bool argnull[FUNC_MAX_ARGS]; /* T if arg[i] is actually NULL */ } FunctionCallInfoData;其中的 flinfo 指向 FmgrInfo
typedef struct FmgrInfo { PGFunction fn_addr; /* pointer to function or handler to be called */ Oid fn_oid; /* OID of function (NOT of handler, if any) */ short fn_nargs; /* number of input args (0..FUNC_MAX_ARGS) */ bool fn_strict; /* function is "strict" (NULL in => NULL out) */ bool fn_retset; /* function returns a set */ unsigned char fn_stats; /* collect stats if track_functions > this */ <span style="color:#ff0000;">void *fn_extra</span>; /* extra space for use by handler */ <span style="color:#ff0000;">MemoryContext fn_mcxt</span>; /* memory context to store fn_extra in */ fmNodePtr fn_expr; /* expression parse tree for call, or NULL */ } FmgrInfo;
我们只要在 fn_mcxt 这个 MemoryContext 下申请内存,就可以让它保持在整个聚合的过程中,申请到的内存块指针,可以存放到 fn_extra 中,也可以作为返回值和入参传递在每次调用间,最后使用 FINALFUNC 指定的函数进行最终处理。
向指定 MemoryContext - fn_mcxt 申请内存的函数如下:
MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(some_type));它会返回一个指向申请内存空间的 void * 指针。
可以参考 src/backend/utils/adt/arrayfuncs.c 以及下列文章。
参考文章:
http://stackoverflow.com/questions/30515552/can-a-postgres-c-language-function-reference-a-stateful-variable-c-side-possibl

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL is worth learning because it is a powerful open source database management system suitable for data storage, management and analysis. 1) MySQL is a relational database that uses SQL to operate data and is suitable for structured data management. 2) The SQL language is the key to interacting with MySQL and supports CRUD operations. 3) The working principle of MySQL includes client/server architecture, storage engine and query optimizer. 4) Basic usage includes creating databases and tables, and advanced usage involves joining tables using JOIN. 5) Common errors include syntax errors and permission issues, and debugging skills include checking syntax and using EXPLAIN commands. 6) Performance optimization involves the use of indexes, optimization of SQL statements and regular maintenance of databases.

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.