Heim >php教程 >php手册 >揭秘Facebook的系统架构和技术概览

揭秘Facebook的系统架构和技术概览

WBOY
WBOYOriginal
2016-06-06 20:12:481466Durchsuche

根据我现有的阅读和谈话,我所理解的今天Facebook的架构如下: Web 前端是由 PHP 写的。Facebook 的 HipHop [1] 会把PHP转成 C++并用 g++编译,这样就可以为模板和Web逻贺业务层提供高的性能。 业务逻辑以Service的形式存在,其使用Thrift [2]。这些Service

根据我现有的阅读和谈话,我所理解的今天Facebook的架构如下:
Web 前端是由 PHP 写的。Facebook 的 HipHop [1] 会把PHP转成 C++并用 g++编译,这样就可以为模板和Web逻贺业务层提供高的性能。

业务逻辑以Service的形式存在,其使用Thrift [2]。这些Service根据需求的不同由PHP,C++或Java实现(也可以用到了其它的一些语言……)

用Java写的Services没有用到任何一个企业级的应用服务器,但用到了Facebook自己的定制的应用服务器。看上去好像是重新发明轮子,但是这些Services只被暴露给Thrift使用(绝大所数是这样),Tomcat太重量级了,即使是Jetty也可能太过了点,其附加值对 Facebook所需要的没有意义。

持久化由MySQL, Memcached [3], Facebook 的 Cassandra [4], Hadoop 的 HBase [5] 完成。Memcached 使用了MySQL的内存Cache。Facebook 工程师承认他们的Cassandra 使用正在减少,因为他们更喜欢HBase,因为它的更简单的一致性模型,以到其MapReduce能力。

离线处理使用Hadoop 和 Hive。

日志,点击,feeds数据使用Scribe [6],把其聚合并存在 HDFS,其使用Scribe-HDFS [7],因而允许使用MapReduce进行扩展分析。

BigPipe [8] 是他们的定制技术,用来加速页面显示。

Varnish Cache [9]用作HTTP代理。他们用这个的原因是高速和有效率。 [10].

用来搞定用户上传的十亿张照片的存储,其由Haystack处理,Facebook自己开发了一个Ad-Hoc存储方案,其主要做了一些低层优化和“仅追加”写技术 [11].

Facebook Messages 使用了自己的架构,其明显地构建在了一个动态集群的基础架构上。业务逻辑和持久化被封装在一个所谓的’Cell’。每个‘Cell’都处理一部分用户,新的‘Cell’可以因为访问热度被添加[12]。持久化归档使用HBase [13]。

Facebook Messages 的搜索引擎由存储在HBase中的一个倒置索引的构建。 [14]

Facebook 搜索引擎实现细节据我所知目前是未知状态。

Typeahead 搜索使用了一个定制的存储和检索逻辑。 [15]

Chat 基于一个Epoll 服务器,这个服务器由Erlang 开发,由Thrift存取 [16]

关于那些供给给上述组件的资源,下面是一些信息和数量,但是有一些是未知的:

Facebook估计有超过60,000 台服务器[16]。他们最新的数据中心在俄勒冈州的Prineville,其基于完全自定设计的硬件[17] 那是最近才公开的 Open Compute 项目[18]。

300 TB 的数据存在 Memcached 中处理 [19]

他们的Hadoop 和 Hive 集群由3000 服务器组成,每台服务器有8个核,32GB的内存,12TB的硬盘,全部有2万4千个CPU的核,96TB内存和36PB的硬盘。 [20]

每天有1000亿的点击量,500亿张照片,100 billion hits per day, 50 billion photos, 3 万亿个对象被 Cache,每天130TB的日志(2010年7月的数据) [21]

参考引用
[1] HipHop for PHP: http://developers.facebook.com/blog/post/358
[2] Thrift: http://thrift.apache.org/
[3] Memcached: http://memcached.org/
[4] Cassandra: http://cassandra.apache.org/
[5] HBase: http://hbase.apache.org/
[6] Scribe: https://github.com/facebook/scribe
[7] Scribe-HDFS: http://hadoopblog.blogspot.com/2009/06/hdfs-scribe-integration.html
[8] BigPipe: http://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
[9] Varnish Cache: http://www.varnish-cache.org/
[10] Facebook goes for Varnish: http://www.varnish-software.com/customers/facebook
[11] Needle in a haystack: efficient storage of billions of photos: http://www.facebook.com/note.php?note_id=76191543919
[12] Scaling the Messages Application Back End: http://www.facebook.com/note.php?note_id=10150148835363920
[13] The Underlying Technology of Messages: https://www.facebook.com/note.php?note_id=454991608919
[14] The Underlying Technology of Messages Tech Talk: http://www.facebook.com/video/video.php?v=690851516105
[15] Facebook’s typeahead search architecture: http://www.facebook.com/video/video.php?v=432864835468
[16] Facebook Chat: http://www.facebook.com/note.php?note_id=14218138919
[17] Who has the most Web Servers?: http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/
[18] Building Efficient Data Centers with the Open Compute Project: http://www.facebook.com/note.php?note_id=10150144039563920
[19] Open Compute Project: http://opencompute.org/
[20] Facebook’s architecture presentation at Devoxx 2010: http://www.devoxx.com
[21] Scaling Facebook to 500 millions users and beyond: http://www.facebook.com/note.php?note_id=409881258919

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Vorheriger Artikel:找到文件里面出现前 n 次的单次Nächster Artikel:PHP版的jQuery