Heim >php教程 >php手册 >你应该知道PHP浮点数知识

你应该知道PHP浮点数知识

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2016-06-06 20:04:221266Durchsuche

这篇文章主要介绍了你应该知道PHP浮点数知识,本文讲解了PHP浮点数、PHP数字的临界值,精度损失等问题,需要的朋友可以参考下

PHP是一种弱类型语言, 这样的特性, 必然要求有无缝透明的隐式类型转换, PHP内部使用zval来保存任意类型的数值, zval的结构如下(5.2为例):

复制代码 代码如下:


struct _zval_struct {
    /* Variable information */
    zvalue_value value;     /* value */
    zend_uint refcount;
    zend_uchar type;    /* active type */
    zend_uchar is_ref;
};


上面的结构中, 实际保存数值本身的是zvalue_value联合体:

复制代码 代码如下:


typedef union _zvalue_value {
    long lval;                  /* long value */
    double dval;                /* double value */
    struct {
        char *val;
        int len;
    } str;
    HashTable *ht;              /* hash table value */
    zend_object_value obj;
} zvalue_value;


今天的话题, 我们只关注其中的俩个成员, lval和dval, 我们要意识到, long lval是随着编译器, OS的字长不同而不定长的, 它有可能是32bits或者64bits, 而double dval(双精度)由IEEE 754规定, 是定长的, 一定是64bits.

请记住这一点, 造就了PHP的一些代码的”非平台无关性”. 我们接下来的讨论, 除了特别指明, 都是假设long为64bits

IEEE 754的浮点计数法, 我这里就不引用了, 大家有兴趣的可以自己查看, 关键的一点是, double的尾数采用52位bit来保存, 算上隐藏的1位有效位, 一共是53bits.

在这里, 引出一个很有意思的问题, 我们用c代码举例(假设long为64bits):

复制代码 代码如下:


    long a = x;
    assert(a == (long)(double)a);


请问, a的取值在什么范围内的时候, 上面的代码可以断言成功?(留在文章最后解答)

现在我们回归正题, PHP在执行一个脚本之前, 首先需要读入脚本, 分析脚本, 这个过程中也包含着, 对脚本中的字面量进行zval化, 比如对于如下脚本:

复制代码 代码如下:


$a = 9223372036854775807; //64位有符号数最大值
$b = 9223372036854775808; //最大值+1
var_dump($a);
var_dump($b);


输出:

复制代码 代码如下:


int(9223372036854775807)
float(9.22337203685E+18)


也就说, PHP在词法分析阶段, 对于一个字面量的数值, 会去判断, 是否超出了当前系统的long的表值范围, 如果不是, 则用lval来保存, zval为IS_LONG, 否则就用dval表示, zval IS_FLOAT.

凡是大于最大的整数值的数值, 我们都要小心, 因为它可能会有精度损失:

复制代码 代码如下:


$a = 9223372036854775807;
$b = 9223372036854775808;
 
var_dump($a === ($b - 1));


输出是false.

现在接上开头的讨论, 之前说过, PHP的整数, 可能是32位, 也可能是64位, 那么就决定了, 一些在64位上可以运行正常的代码, 可能会因为隐形的类型转换, 发生精度丢失, 从而造成代码不能正常的运行在32位系统上.

所以, 我们一定要警惕这个临界值, 好在PHP中已经定义了这个临界值:

复制代码 代码如下:


    echo PHP_INT_MAX;
 ?>
 


当然, 为了保险起见, 我们应该使用字符串来保存大整数, 并且采用比如bcmath这样的数学函数库来进行计算.

另外, 还有一个关键的配置, 会让我们产生迷惑, 这个配置就是, 这配置决定了PHP再输出一个float值的时候, 输出多少有效位.

最后, 我们再来回头看上面提出的问题, 也就是一个long的整数, 最大的值是多少, 才能保证转到float以后再转回long不会发生精度丢失?

比如, 对于整数, 我们知道它的二进制表示是, 101, 现在, 让我们右移俩位, 变成1.01, 舍去高位的隐含有效位1, 我们得到在double中存储5的二进制数值为:

复制代码 代码如下:


0/*符号位*/ 10000000001/*指数位*/ 0100000000000000000000000000000000000000000000000000


5的二进制表示, 丝毫未损的保存在了尾数部分, 这个情况下, 从double转会回long, 不会发生精度丢失.

我们知道double用52位表示尾数, 算上隐含的首位1, 一共是53位精度.. 那么也就可以得出, 如果一个long的整数, 值小于:

复制代码 代码如下:


2^53 - 1 == 9007199254740991; //牢记, 我们现在假设是64bits的long


那么, 这个整数, 在发生long->double->long的数值转换时, 不会发生精度丢失. ,
Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn