suchen
HeimBackend-EntwicklungPython-Tutorial用Python编写一个基于终端的实现翻译的脚本

为什么写这个程序,为什么不给这个程序配备gui?原因很简单,因为我是一个命令行控,Linux习惯了不习惯了鼠标,总觉得点着不如敲命令快,各位在看这篇文章就说明和本人有相同的爱好.这个用python写的翻译工具是通过google来实现的,由于google返回的数据不是很规范(或者说我没有找到规律),现在前三项能正常显示(源词,翻译结果,和汉语拼音).下面的词性和其他释义可能不同,见谅,望大神可以指点下小弟和帮小弟完善,这里赶紧不尽.

好了不费话了,下面放代码:

#!/usr/bin/env python
# -*-coding:utf8 -*-
'''
#=============================================================================
#   FileName: translate.py
#     Desc: To translate with zh to en or en2zh
#    Author: cold
#    Email: wh_linux@126.com
#   HomePage: http://www.linuxzen.com
#   Version: 0.0.1
#  LastChange: 2012-04-23 23:04:08
#   History:
#=============================================================================
'''

import urllib
import urllib2
from sys import argv,exit
import re

# 显示帮助信息
def helpinfo():
print '''
Usage: pytran {zh2en|en2zh} content
'''
# 格式化输出
def formatresult(result,srclang):
resu = result.split('[[')
if (srclang=='en2zh' or srclang == 'zh2en'):
firstre = resu[1].replace('[','').replace(']','').split('"')
print '源词:',firstre[3]
print '结果:',firstre[1]
if (srclang=='zh2en'):
piny = firstre[7]
else:
piny = firstre[5]
print '拼音:',piny
if(srclang=='zh2en'):
secresu=resu[2].replace('"','').split('[')
else:
secresu = resu[2].replace('"', '').split('[')
print '词性:',secresu[0].replace(',','')
print '其他释义:'
for i in ''.join(secresu[1].split(']')).split(','):
print i

# 获取命令行参数
try:
srclang = argv[1]
except:
helpinfo()
exit(1)
try:
cont = argv[2]
except:
helpinfo()
exit(2)

# 判断翻译目标语言用来确定传送参数
if(srclang == 'zh2en'):
data=urllib.urlencode({'client':'t', 'text':cont,
'hl':'zh-CN','tl':'en',
'multires':'1','prev':'btn',
'ssel':'0','sc':'1'})
elif(srclang == 'en2zh'):
data=urllib.urlencode({'client':'t', 'text':cont,
'hl':'zh-CN', 'sl':'en','tl':'zh-CN',
'multires':'1', 'prev':'btn',
'ssel':'0','sc':'1'})
else:
helpinfo()

# 打开google翻译内容
url = 'http://translate.google.cn/translate_a/t'
req =urllib2.Request(url,data)
req.add_header("User-Agent", "Mozilla/5.0+(compatible;+Googlebot/2.1;++http://www.google.com/bot.html)")
fd = urllib2.urlopen(req)
result = fd.read()

# 格式化输出
formatresult(result, srclang)
fd.close()

为了更方便的使用我们把这个脚本命名位pytranslate,放到/usr/bin下,并赋予执行权限:

chmod +x /usr/bin/pytranslate

然后我们就可以使用它进行翻译了: 翻译英文到中文:

pytranslate en2zh extent
源词: extent
结果: 程度
拼音: Chéngdù
词性: 名词
其他释义:
程度
范围
幅度
规模
度
地步
广度
长度
面
长短
份儿
界
en
翻译中文到英文
pytranslate zh2en 中国
源词: 中国
结果: China
拼音: Zhōngguó
词性: 名词
其他释义:
China
zh-CN

好吧相信聪明的你肯定发现如何使用了这里就不罗嗦了.

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python vs. C: Lernkurven und BenutzerfreundlichkeitPython vs. C: Lernkurven und BenutzerfreundlichkeitApr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python vs. C: Speicherverwaltung und KontrollePython vs. C: Speicherverwaltung und KontrolleApr 19, 2025 am 12:17 AM

Python und C haben signifikante Unterschiede in der Speicherverwaltung und -kontrolle. 1. Python verwendet die automatische Speicherverwaltung, basierend auf der Referenzzählung und der Müllsammlung, um die Arbeit von Programmierern zu vereinfachen. 2.C erfordert eine manuelle Speicherverwaltung und liefert mehr Kontrolle, aber die Komplexität und das Fehlerrisiko. Welche Sprache zu wählen sollte, sollte auf Projektanforderungen und Teamtechnologie -Stack basieren.

Python für wissenschaftliches Computer: Ein detailliertes AussehenPython für wissenschaftliches Computer: Ein detailliertes AussehenApr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Python und C: Das richtige Werkzeug findenPython und C: Das richtige Werkzeug findenApr 19, 2025 am 12:04 AM

Ob die Auswahl von Python oder C von den Projektanforderungen abhängt: 1) Python eignet sich aufgrund seiner prägnanten Syntax und reichhaltigen Bibliotheken für schnelle Entwicklung, Datenwissenschaft und Skripten; 2) C ist für Szenarien geeignet, die aufgrund seiner Zusammenstellung und des manuellen Speichermanagements eine hohe Leistung und die zugrunde liegende Kontrolle erfordern, wie z. B. Systemprogrammierung und Spielentwicklung.

Python für Datenwissenschaft und maschinelles LernenPython für Datenwissenschaft und maschinelles LernenApr 19, 2025 am 12:02 AM

Python wird in Datenwissenschaft und maschinellem Lernen häufig verwendet, wobei hauptsächlich auf seine Einfachheit und ein leistungsstarkes Bibliotheksökosystem beruhen. 1) Pandas wird zur Datenverarbeitung und -analyse verwendet, 2) Numpy liefert effiziente numerische Berechnungen, und 3) Scikit-Learn wird für die Konstruktion und Optimierung des maschinellen Lernens verwendet. Diese Bibliotheken machen Python zu einem idealen Werkzeug für Datenwissenschaft und maschinelles Lernen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend?Python lernen: Ist 2 Stunden tägliches Studium ausreichend?Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python für die Webentwicklung: SchlüsselanwendungenPython für die Webentwicklung: SchlüsselanwendungenApr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python vs. C: Erforschung von Leistung und Effizienz erforschenPython vs. C: Erforschung von Leistung und Effizienz erforschenApr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool