Docker
现在Docker是地球上最炙手可热的项目之一,就意味着人民实际上不仅仅是因为这个才喜欢它。
话虽如此,我非常喜欢使用容器,服务发现以及所有被创造出的新趣的点子和领域来切换工作作为范例。
这个文章中我会简要介绍使用python中的docker-py模块来操作Docker 容器,这里会使用我喜爱的编程工具IPython。
安装docker-py
首先需要docker-py。注意这里的案例中我将会使用Ubuntu Trusty 14.04版本。
$ pip install docker-py
IPyhton
我真的很喜欢用IPython来探索Python。 它像是一共高级的python Shell,但是可以做的更多。
$ sudo apt-get install ipython SNIP! $ ipython Python 2.7.6 (default, Mar 22 2014, 22:59:56) Type "copyright", "credits" or "license" for more information. IPython 1.2.1 -- An enhanced Interactive Python. ? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. In [1]:
安装 docker
如果没有安装Docker,那首先安装docker
$ sudo apt-get install docker.io
然后把 docker.io 起个别名 docker
$ alias docker='docker.io' $ docker version Client version: 0.9.1 Go version (client): go1.2.1 Git commit (client): 3600720 Server version: 0.9.1 Git commit (server): 3600720 Go version (server): go1.2.1 Last stable version: 0.11.1, please update docker
Docker现在应该有个socket开启,我们可以用来连接。
$ ls /var/run/docker.sock /var/run/docker.sock
Pull 镜像
让我们下载 busybox镜像
$ docker pull busybox Pulling repository busybox 71e18d715071: Download complete 98b9fdab1cb6: Download complete 1277aa3f93b3: Download complete 6e0a2595b580: Download complete 511136ea3c5a: Download complete b6c0d171b362: Download complete 8464f9ac64e8: Download complete 9798716626f6: Download complete fc1343e2fca0: Download complete f3c823ac7aa6: Download complete
现在我们准备使用 docker-py 了。
使用 docker-py
现在我们有了docker-py , IPython, Docker 和 busybox 镜像,我们就能建立一些容器。
如果你不是很熟悉IPython,可以参照这个教程学习(http://ipython.org/ipython-doc/stable/interactive/tutorial.html),
IPython是十分强大的。
首先启动一个IPython ,导入docker模块。
$ ipython Python 2.7.6 (default, Mar 22 2014, 22:59:56) Type "copyright", "credits" or "license" for more information. IPython 1.2.1 -- An enhanced Interactive Python. ? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. In [1]: import docker
然后我们建立一个连接到Docker
In [2]: c = docker.Client(base_url='unix://var/run/docker.sock', ...: version='1.9', ...: timeout=10)
现在我们已经连接到Docker。
IPython使用tab键来补全的。 如果 输入 “c.” 然后按下tab键,IPython会显示Docker连接对象所有的方法和属性。
In [3]: c. c.adapters c.headers c.pull c.attach c.history c.push c.attach_socket c.hooks c.put c.auth c.images c.remove_container c.base_url c.import_image c.remove_image c.build c.info c.request c.cert c.insert c.resolve_redirects c.close c.inspect_container c.restart c.commit c.inspect_image c.search c.containers c.kill c.send c.cookies c.login c.start c.copy c.logs c.stop c.create_container c.max_redirects c.stream c.create_container_from_config c.mount c.tag c.delete c.options c.top c.diff c.params c.trust_env c.events c.patch c.verify c.export c.port c.version c.get c.post c.wait c.get_adapter c.prepare_request c.head c.proxies
让我们来看下c.images 我输入一个 “?”在c.之后,ipython 会提供这个对象的详细信息。
In [5]: c.images? Type: instancemethod String Form:<bound method Client.images of <docker.client.Client object at 0x7f3acc731790>> File: /usr/local/lib/python2.7/dist-packages/docker/client.py Definition: c.images(self, name=None, quiet=False, all=False, viz=False) Docstring: <no docstring>
获取busybox 镜像。
In [6]: c.images(name="busybox") Out[6]: [{u'Created': 1401402591, u'Id': u'71e18d715071d6ba89a041d1e696b3d201e82a7525fbd35e2763b8e066a3e4de', u'ParentId': u'8464f9ac64e87252a91be3fbb99cee20cda3188de5365bec7975881f389be343', u'RepoTags': [u'busybox:buildroot-2013.08.1'], u'Size': 0, u'VirtualSize': 2489301}, {u'Created': 1401402590, u'Id': u'1277aa3f93b3da774690bc4f0d8bf257ff372e23310b4a5d3803c180c0d64cd5', u'ParentId': u'f3c823ac7aa6ef78d83f19167d5e2592d2c7f208058bc70bf5629d4bb4ab996c', u'RepoTags': [u'busybox:ubuntu-14.04'], u'Size': 0, u'VirtualSize': 5609404}, {u'Created': 1401402589, u'Id': u'6e0a2595b5807b4f8c109f3c6c5c3d59c9873a5650b51a4480b61428427ab5d8', u'ParentId': u'fc1343e2fca04a455f803ba66d1865739e0243aca6c9d5fd55f4f73f1e28456e', u'RepoTags': [u'busybox:ubuntu-12.04'], u'Size': 0, u'VirtualSize': 5454693}, {u'Created': 1401402587, u'Id': u'98b9fdab1cb6e25411eea5c44241561326c336d3e0efae86e0239a1fe56fbfd4', u'ParentId': u'9798716626f6ae4e6b7f28451c0a1a603dc534fe5d9dd3900150114f89386216', u'RepoTags': [u'busybox:buildroot-2014.02', u'busybox:latest'], u'Size': 0, u'VirtualSize': 2433303}]
建立一个容器。 注意我添加一个可以将要运行的命令,这里用的是”env”命令。
In [8]: c.create_container(image="busybox", command="env") Out[8]: {u'Id': u'584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87', u'Warnings': None}
使用ID来启动这个容器
In [9]: c.start(container="584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87")
我们可以检查日志,应该可以看到当容器创建的时候 ,我们配置的”env”命令的输出。
In [11]: c.logs(container="584459a09e6d4180757cb5c10ac354ca46a32bf8e122fa3fb71566108f330c87") Out[11]: 'HOME=/\nPATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin\nHOSTNAME=584459a09e6d\n'
如果使用docker命令行,使用同样的命令行选项运行一个容器,应该可以看到类似的信息。
$ docker run busybox env HOME=/ PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin HOSTNAME=ce3ad38a52bf
据我所知,docker-py没有运行选项,我们只能创建一个容器然后启动它。
以下是一个案例:
In [17]: busybox = c.create_container(image="busybox", command="echo hi") In [18]: busybox? Type: dict String Form:{u'Id': u'34ede853ee0e95887ea333523d559efae7dcbe6ae7147aa971c544133a72e254', u'Warnings': None} Length: 2 Docstring: dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2) In [19]: c.start(busybox.get("Id")) In [20]: c.logs(busybox.get("Id")) Out[20]: 'hi\n'
如果你还没有使用过busybox镜像,我建议你使用下。我也建议debain下的jessie镜像,它只有120MB,比Ubuntu镜像要小。
总结
Docker是一个吸引人的新系统,可以用来建立有趣的新技术应用,特别是云服务相关的。使用IPython我们探索了怎么使用
docker-py模块来创建docker 容器。 现在使用python,我们可以结合docker和容易 创造出很多新的点子。

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und C haben signifikante Unterschiede in der Speicherverwaltung und -kontrolle. 1. Python verwendet die automatische Speicherverwaltung, basierend auf der Referenzzählung und der Müllsammlung, um die Arbeit von Programmierern zu vereinfachen. 2.C erfordert eine manuelle Speicherverwaltung und liefert mehr Kontrolle, aber die Komplexität und das Fehlerrisiko. Welche Sprache zu wählen sollte, sollte auf Projektanforderungen und Teamtechnologie -Stack basieren.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Ob die Auswahl von Python oder C von den Projektanforderungen abhängt: 1) Python eignet sich aufgrund seiner prägnanten Syntax und reichhaltigen Bibliotheken für schnelle Entwicklung, Datenwissenschaft und Skripten; 2) C ist für Szenarien geeignet, die aufgrund seiner Zusammenstellung und des manuellen Speichermanagements eine hohe Leistung und die zugrunde liegende Kontrolle erfordern, wie z. B. Systemprogrammierung und Spielentwicklung.

Python wird in Datenwissenschaft und maschinellem Lernen häufig verwendet, wobei hauptsächlich auf seine Einfachheit und ein leistungsstarkes Bibliotheksökosystem beruhen. 1) Pandas wird zur Datenverarbeitung und -analyse verwendet, 2) Numpy liefert effiziente numerische Berechnungen, und 3) Scikit-Learn wird für die Konstruktion und Optimierung des maschinellen Lernens verwendet. Diese Bibliotheken machen Python zu einem idealen Werkzeug für Datenwissenschaft und maschinelles Lernen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)