Heim >Datenbank >MySQL-Tutorial >个人经验总结:数据库分散存储问题的解决_MySQL

个人经验总结:数据库分散存储问题的解决_MySQL

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2016-06-01 13:49:581360Durchsuche

bitsCN.com

   网站在Web 2.0时代,时常面临迅速增加的访问量(这是好事情),但是我们的应用如何满足用户的访问需求,而且基本上我们看到的情况都是性能瓶颈都是在数据库上,这 个不怪数据库,毕竟要满足很大访问量确实对于任何一款数据库都是很大的压力,不论是商业数据库Oracle、MS SQL Server、DB2之类,还是开源的MySQL、PostgreSQL,都是很大的挑战,解决的方法很简单,就是把数据分散在不同的数据库上(可以是硬 件上的,也可以是逻辑上的),本文就是主要讨论数据库分散存储的的问题。
目前主要分布存储的方式都是按照一定的方式进行切分,主要是垂直切分(纵向)和水平切分(横向)两种方式,当然,也有两种结合的方式,达到更到的切分粒度。
 
◆1. 垂直切分(纵向)数据是数据库切分按照网站业务、产品进行切分,比如用户数据、博客文章数据、照片数据、标签数据、群组数据等等每个业务一个独立的数据库或者数据库服务器。
◆2. 水平切分(横向)数据是把所有数据当作一个大产品,但是把所有的平面数据按照某些Key(比如用户名)分散在不同数据库或者数据库服务器上,分散对数据访问的压力,这种方式也是本文主要要探讨的。
 
本文主要针对的的 MySQL/PostgreSQL 类的开源数据库,同时平台是在 Linux/FreeBSD,使用 PHP/Perl/Ruby/Python 等脚本语言,搭配 Apache/Lighttpd 等Web服务器 的平台下面的Web应用,不讨论静态文件的存储,比如视频、图片、CSS、JS,那是另外一个话题。
 
说明:下面将会反复提到的一个名次“节点”(Node),指的是一个数据库节点,可能是物理的一台数据库服务器,也可能是一个数据库,一般情况是指一台数据库服务器,并且是具有 Master/Slave 结构的数据库服务器,我们查看一下图片,了解这样节点的架构:

(图1)
一、基于散列的分布方式
 
1.散列方式介绍
基 于散列(Hash)的分布存储方式,主要是依赖主要Key和散列算法,比如以用户为主的应用主要的角色就是用户,那么做Key的就可以是用户ID或者是用 户名、邮件地址之类(该值必须在站点中随处传递),使用这个唯一值作为Key,通过对这个Key进行散列算法,把不同的用户数据分散在不同的数据库节点 (Node)上。
 
我们通过简单的实例来描述这个问题:比如有一个应用,Key是用户ID,拥有10个数据库节点,最简单的散列算法是我们 用户ID数模以我们所有节点数,余数就是对应的节点机器,算法:所在节点 = 用户ID % 总节点数,那么,用户ID为125的用户所在节点:125 % 10 = 5,那么应该在名字为5的节点上。同样的,可以构造更为强大合理的Hash算法来更均匀的分配用户到不同的节点上。
 
我们查看一下采用散列分布方式的数据结构图:

(图2)
2.散列分布存储方式的扩容
 
我们知道既然定义了一个散列算法,那么这些Key就会按部就班的分散到指定节点上,但是如果目前的所有节点不够满足要求怎么办?这就存在一个扩容的问题,扩容首当其冲的就是要修改散列算法,同时数据也要根据散列算法进修迁移或者修改。
 
(1) 迁移方式扩容:修 改散列算法以后,比如之前是10个节点,现在增加到20个节点,那么Hash算法就是[模20],相应的存在一个以前的节点被分配的数据会比较多,但是新 加入的节点数据少的不平衡的状态,那么可以考虑使用把以前数据中的数据按照Key使用新的Hash算法进行运算出新节点,把数据迁移到新节点,缺点但是这 个成本相应比较大,不稳定性增加;好处是数据比较均匀,并且能够充分利用新旧节点。
 
(2) 充分利用新节点:增 加新节点以后,Hash算法把新加入的数据全部Hash到新

bitsCN.com
Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Vorheriger Artikel:MySQL的权限分配_MySQLNächster Artikel:phpMyAdmin 3.4.9发布_MySQL