suchen
HeimTechnologie-PeripheriegeräteKIEin paar Codezeilen stabilisieren UNet! Die Sun Yat-sen University und andere schlugen das ScaleLong-Diffusionsmodell vor: von der Infragestellung der Skalierung zur Skalierung

In der Standard-UNet-Struktur beträgt der Skalierungskoeffizient 几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling auf der Long-Skip-Verbindung im Allgemeinen 1.

In einigen bekannten Diffusionsmodellarbeiten wie Imagen, Score-basiertes generatives Modell und SR3 usw. haben sie jedoch alle 几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling festgelegt und festgestellt, dass solche Einstellungen das Diffusionstraining effektiv beschleunigen können Modelle.

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

Skalierung in Frage stellenIm Originalpapier gibt es jedoch keine spezifische Analyse des Skalierungsvorgangs der Sprungverbindung in Imagen und anderen Modellen, es wird jedoch gesagt, dass diese Einstellung zur Beschleunigung beiträgt das Training des Diffusionsmodells.

Zuallererst macht uns diese Art der empirischen Darstellung unklar, welche Rolle dieses Setting spielt?

Außerdem wissen wir nicht, ob wir nur 几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling festlegen können oder ob wir andere Konstanten verwenden können?

Sind die „Status“ von Skip-Verbindungen an verschiedenen Standorten gleich? Warum dieselbe Konstante verwenden?

Der Autor hat viele Fragezeichen dazu ...

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为ScalingBilder

Skalierung verstehen

Im Allgemeinen ist UNet im Vergleich zu ResNet- und Transformer-Strukturen in der tatsächlichen Verwendung nicht „tief“. Da es nicht tief ist, ist es weniger anfällig für Optimierungsprobleme wie verschwindende Gradienten, die in anderen „tiefen“ neuronalen Netzwerkstrukturen häufig auftreten.

Darüber hinaus werden aufgrund der Besonderheit der UNet-Struktur flache Features durch lange Sprungverbindungen mit tiefen Standorten verbunden, wodurch Probleme wie das Verschwinden des Gradienten weiter vermieden werden.

Denken Sie andersherum: Wenn eine solche Struktur nicht beachtet wird, führt dies dann zu Problemen wie übermäßigen Steigungen und Parameter-(Merkmals-)Schwankungen aufgrund von Aktualisierungen?

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为ScalingBilder

Durch die Visualisierung der Merkmale und Parameter der Diffusionsmodellaufgabe während des Trainingsprozesses kann festgestellt werden, dass tatsächlich Instabilität vorliegt.

Die Instabilität von Parametern (Features) wirkt sich auf den Gradienten aus, was wiederum Auswirkungen auf Parameteraktualisierungen hat. Letztendlich besteht bei diesem Prozess ein höheres Risiko unerwünschter Beeinträchtigungen der Leistung. Deshalb müssen wir Wege finden, diese Instabilität zu kontrollieren.

Ferner für das Diffusionsmodell. Die Eingabe von UNet ist ein verrauschtes Bild. Wenn das Modell das zusätzliche Rauschen genau vorhersagen soll, erfordert dies, dass das Modell eine hohe Robustheit gegenüber der Eingabe gegenüber zusätzlichen Störungen aufweist.

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

Papier: https://arxiv.org/abs/2310.13545

Code: https://github.com/sail-sg/ScaleLong

Forscher haben die oben genannten Probleme gefunden, die in Long zu finden sind Verbindung überspringen Die Skalierung wird auf dem System zur einheitlichen Schadensbegrenzung durchgeführt.

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

Aus Satz 3.1 steht der Schwingungsbereich des Merkmals der mittleren Schicht (die Breite der Ober- und Untergrenze) in direktem Zusammenhang mit der Summe der Quadrate des Skalierungskoeffizienten. Geeignete Skalierungskoeffizienten tragen dazu bei, die Instabilität von Merkmalen zu verringern.

Allerdings ist zu beachten, dass der Schock tatsächlich optimal gemildert wird, wenn der Skalierungskoeffizient direkt auf 0 gesetzt wird. (Manueller Hundekopf)

Aber wenn UNet zu einer Situation ohne Sprünge degradiert, ist das Instabilitätsproblem gelöst, aber auch die Darstellungsfähigkeit geht verloren. Dies ist ein Kompromiss zwischen Modellstabilität und Darstellungsfähigkeiten.

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为ScalingBilder

Ähnlich aus der Perspektive des Parametergradienten. Satz 3.3 zeigt auch, dass der Skalierungskoeffizient die Größe des Gradienten steuert.

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为ScalingBild

Darüber hinaus zeigt Satz 3.4 auch, dass die Skalierung der Long-Skip-Verbindung auch die robuste Obergrenze des Modells gegenüber Eingangsstörungen beeinflussen und die Stabilität des Diffusionsmodells gegenüber Eingangsstörungen verbessern kann.

Become Scaling

Durch die obige Analyse verstehen wir, wie wichtig die Skalierung auf Long-Skip-Verbindungen für ein stabiles Modelltraining ist. 几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling gilt auch für die obige Analyse.

Als nächstes analysieren wir, welche Art von Skalierung eine bessere Leistung erzielen kann. Schließlich kann die obige Analyse nur zeigen, dass die Skalierung gut ist, aber sie kann nicht bestimmen, welche Art von Skalierung die beste oder bessere ist.

Eine einfache Möglichkeit besteht darin, ein lernbares Modul für eine lange Sprungverbindung einzuführen, um die Skalierung adaptiv anzupassen. Diese Methode wird als Learnable Scaling (LS)-Methode bezeichnet. Wir übernehmen eine SENet-ähnliche Struktur, die wie folgt aussieht (die hier betrachtete U-ViT-Struktur ist sehr gut organisiert!) Training von Diffusionsmodellen! Darüber hinaus versuchen wir, die in LS gelernten Koeffizienten zu visualisieren.

Wie in der folgenden Abbildung gezeigt, werden wir feststellen, dass diese Koeffizienten einen exponentiellen Abwärtstrend aufweisen (beachten Sie, dass sich die erste lange Sprungverbindung hier auf die Verbindung bezieht, die das erste und letzte Ende von UNet verbindet), und der erste Koeffizient liegt fast nahe beieinander zu 1. Das Phänomen ist auch erstaunlich!

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为ScalingBild

Basierend auf dieser Beobachtungsreihe (weitere Einzelheiten finden Sie im Artikel) haben wir außerdem die Constant Scaling (CS)-Methode vorgeschlagen, die keine lernbaren Parameter erfordert:

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

Die CS-Strategie erfordert keine zusätzlichen Parameter wie die ursprüngliche Skalierungsoperation mit

, sodass fast kein zusätzlicher Rechenaufwand entsteht.

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为ScalingObwohl CS im Stalltraining die meiste Zeit nicht so gut abschneidet wie LS, ist es für die bestehenden

Strategien dennoch einen Versuch wert. 几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

Die oben genannten Implementierungen von CS und LS sind sehr einfach und erfordern nur wenige Codezeilen. Für jede (hua)-Formel (li) und jede (hu)-artige (shao) UNet-Struktur müssen die Merkmalsabmessungen möglicherweise angepasst werden. (Manueller Hundekopf +1)几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

Kürzlich haben auch einige Folgearbeiten wie FreeU, SCEdit und andere gezeigt, wie wichtig die Skalierung bei Skip-Verbindungen ist. Jeder ist herzlich eingeladen, es zu versuchen und zu fördern.

Das obige ist der detaillierte Inhalt vonEin paar Codezeilen stabilisieren UNet! Die Sun Yat-sen University und andere schlugen das ScaleLong-Diffusionsmodell vor: von der Infragestellung der Skalierung zur Skalierung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Dieser Artikel ist reproduziert unter:51CTO.COM. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen
Die meisten verwendeten 10 Power BI -Diagramme - Analytics VidhyaDie meisten verwendeten 10 Power BI -Diagramme - Analytics VidhyaApr 16, 2025 pm 12:05 PM

Nutzung der Leistung der Datenvisualisierung mit Microsoft Power BI -Diagrammen In der heutigen datengesteuerten Welt ist es entscheidend, komplexe Informationen effektiv mit nicht-technischem Publikum zu kommunizieren. Die Datenvisualisierung schließt diese Lücke und transformiert Rohdaten i

Expertensysteme in KIExpertensysteme in KIApr 16, 2025 pm 12:00 PM

Expertensysteme: Ein tiefes Eintauchen in die Entscheidungsfunktion der KI Stellen Sie sich vor, Zugang zu Expertenberatung zu irgendetwas, von medizinischen Diagnosen bis hin zur Finanzplanung. Das ist die Kraft von Expertensystemen in der künstlichen Intelligenz. Diese Systeme imitieren den Profi

Drei der besten Vibe -Codierer brechen diese KI -Revolution im Code aufDrei der besten Vibe -Codierer brechen diese KI -Revolution im Code aufApr 16, 2025 am 11:58 AM

Zunächst ist es offensichtlich, dass dies schnell passiert. Verschiedene Unternehmen sprechen über die Proportionen ihres Code, die derzeit von KI verfasst wurden, und diese nehmen mit einem schnellen Clip zu. Es gibt bereits viel Arbeitsplatzverschiebung

Runway Ai's Gen-4: Wie kann eine Montage über Absurd hinausgehenRunway Ai's Gen-4: Wie kann eine Montage über Absurd hinausgehenApr 16, 2025 am 11:45 AM

Die Filmindustrie befindet sich neben allen kreativen Sektoren vom digitalen Marketing bis hin zu sozialen Medien an einer technologischen Kreuzung. Als künstliche Intelligenz beginnt, jeden Aspekt des visuellen Geschichtenerzählens umzugestiegen und die Landschaft der Unterhaltung zu verändern

Wie kann man sich 5 Tage lang anmelden. - Analytics VidhyaWie kann man sich 5 Tage lang anmelden. - Analytics VidhyaApr 16, 2025 am 11:43 AM

Der kostenlose KI/ML -Online -Kurs von ISRO: Ein Tor zu Geospatial Technology Innovation Die Indian Space Research Organization (ISRO) bietet durch ihr indisches Institut für Fernerkundung (IIRS) eine fantastische Gelegenheit für Studenten und Fachkräfte

Lokale Suchalgorithmen in KILokale Suchalgorithmen in KIApr 16, 2025 am 11:40 AM

Lokale Suchalgorithmen: Ein umfassender Leitfaden Die Planung eines groß angelegten Ereignisses erfordert eine effiziente Verteilung der Arbeitsbelastung. Wenn herkömmliche Ansätze scheitern, bieten lokale Suchalgorithmen eine leistungsstarke Lösung. In diesem Artikel wird Hill Climbing und Simul untersucht

OpenAI-Verschiebungen Fokus mit GPT-4.1, priorisiert die Codierung und KosteneffizienzOpenAI-Verschiebungen Fokus mit GPT-4.1, priorisiert die Codierung und KosteneffizienzApr 16, 2025 am 11:37 AM

Die Veröffentlichung umfasst drei verschiedene Modelle, GPT-4.1, GPT-4.1 Mini und GPT-4.1-Nano, die einen Zug zu aufgabenspezifischen Optimierungen innerhalb der Landschaft des Großsprachenmodells signalisieren. Diese Modelle ersetzen nicht sofort benutzergerichtete Schnittstellen wie

Die Eingabeaufforderung: Chatgpt generiert gefälschte PässeDie Eingabeaufforderung: Chatgpt generiert gefälschte PässeApr 16, 2025 am 11:35 AM

Der Chip Giant Nvidia sagte am Montag, es werde zum ersten Mal in den USA die Herstellung von KI -Supercomputern - Maschinen mit der Verarbeitung reichlicher Daten herstellen und komplexe Algorithmen ausführen. Die Ankündigung erfolgt nach Präsident Trump SI

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat -Befehle und wie man sie benutzt
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft