Heim >Computer-Tutorials >Computerwissen >Wie soll Linux „Lastdurchschnitt' verstehen?
Wenn wir normalerweise feststellen, dass das System langsamer wird, überprüfen wir zunächst die Auslastung des Systems, indem wir den Befehl „top“ oder „uptime“ ausführen. Nachdem ich beispielsweise den Uptime-Befehl eingegeben hatte, zeigte das System sofort die relevanten Ergebnisse an.
$ uptime 02:34:03 up 2 days, 20:14, 1 user, load average: 0.63, 0.83, 0.88
前面的几列我们都比较熟悉,它们分别是当前时间、系统运行时间以及正在登录用户数
1 02:34:03 // 当前时间
2 up 2 days, 20:14 // 系统运行时间
3 1 user // 正在登录用户数
而最后三个数字呢,依次则是过去 1 分钟、5 分钟、15 分钟的平均负载(Load Average)。
平均负载 这个词对很多人来说,可能既熟悉又陌生,我们每天的工作中,也都会提到这个词,但你真正理解它背后的含义吗?
一定有人会说,平均负载不就是单位时间内的 CPU 使用率吗?上面的 0.63,就代表 CPU 使用率是 63%。其实并不是这样, 简单来说,平均负载是指单位时间内,系统处于可运行状态和不可中断状态的平均进程 数,也就是平均活跃进程数,它和 CPU 使用率并没有直接关系。这里我先解释下,可运行状态和不可中断状态这俩词。
所谓可运行状态的进程,是指正在使用 CPU 或者正在等待 CPU 的进程,也就是我们常用 ps 命令看到的,处于 R 状态(Running 或 Runnable)的进程。不可中断状态的进程则是正处于内核态关键流程中的进程,并且这些流程是不可打断的,最常见的是等待硬件设备的 I/O 响应,也就是我们在 ps 命令中看到的 D 状态 (Uninterruptible Sleep,也称为 Disk Sleep)的进程。
比如,当一个进程向磁盘读写数据时,为了保证数据的一致性,在得到磁盘回复前,它是不能被其他进程或者中断打断的,这个时候的进程就处于不可中断状态。如果此时的进程被打断了,就容易出现磁盘数据与进程数据不一致的问题。所以,不可中断状态实际上是系统对进程和硬件设备的一种保护机制。
因此,你可以简单理解为,平均负载其实就是平均活跃进程数。平均活跃进程数,直观上的理解就是单位时间内的活跃进程数。既然平均的是活跃进程数,那么最理想的,就是每个 CPU 上都刚好运行着一个进程,这样 每个 CPU 都得到了充分利用。比如当平均负载为 2 时,意味着什么呢?
讲完了什么是平均负载,现在我们再回到最开始的例子,在 uptime 命令的结果里,那三个时间段的平均负载数,多大的时候能说明系统负载高?或是多小的时候就能说明系统负载很低呢?
我们知道,平均负载最理想的情况是等于 CPU 个数。所以在评判平均负载时,首先你要知道系统有几个 CPU,这可以通过 top 命令或者从文件 /proc/cpuinfo 中读取,比如:
# 关于 grep 和 wc 的用法请查询它们的手册或者网络搜索 $ grep 'model name' /proc/cpuinfo | wc -l 2
有了 CPU 个数,我们就可以判断出,当平均负载比 CPU 个数还大的时候,系统已经出现了过载。 不过,我们在例子中可以看到,平均负载有三个数值,到底该参考哪一个呢?
实际上,都要看。三个不同时间间隔的平均值,其实给我们提供了,分析系统负载趋势的数据来源,让我们能更全面、更立体地理解目前的负载状况。
一旦 1 分钟的平均负载接近或超过了 CPU 的个数,就意味着系统正在发生过载的问题,这时就 得分析调查是哪里导致的问题,并要想办法优化了。
那么,在实际生产环境中,平均负载多高时,需要我们重点关注呢? 在我看来,当平均负载高于 CPU 数量 70% 的时候,你就应该分析排查负载高的问题了。一旦负载过高,就可能导致进程响应变慢,进而影响服务的正常功能。但 70% 这个数字并不是绝对的,最推荐的方法,还是把系统的平均负载监控起来,然后根据更多的历史数据,判断负载的变化趋势。当发现负载有明显升高趋势时,比如说负载翻倍了,你再去做分析和调查。
现实工作中,我们经常容易把平均负载和 CPU 使用率混淆,所以在这里,我也做一个区分。可能你会疑惑,既然平均负载代表的是活跃进程数,那平均负载高了,不就意味着 CPU 使用率高吗?
我们还是要回到平均负载的含义上来,平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU 和等待 I/O 的进程。而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。比如:
下面,我们以三个示例分别来看这三种情况,并用 iostat、mpstat、pidstat 等工具,找出平均负载升高的根源。
机器配置:2 CPU,8GB 内存 ;预先安装 stress 和 sysstat 包,如 apt install stress sysstat
先用 uptime 命令,看一下测试前的平均负载情况:
$ uptime load average: 0.11, 0.15, 0.09
首先,我们在第一个终端运行 stress 命令,模拟一个 CPU 使用率 100% 的场景:
$ stress --cpu 1 --timeout 600
接着,在第二个终端运行 uptime 查看平均负载的变化情况:
# -d 参数表示高亮显示变化的区域 $ watch -d uptime ..., load average: 1.00, 0.75, 0.39
最后,在第三个终端运行 mpstat 查看 CPU 使用率的变化情况:
从终端二中可以看到,1 分钟的平均负载会慢慢增加到 1.00,而从终端三中还可以看到,正好有一个 CPU 的使用率为 100%,但它的 iowait 只有 0。这说明,平均负载的升高是由于 CPU 使用率为 100%。
那么,到底是哪个进程导致了 CPU 使用率为 100% 呢?你可以使用 pidstat 来查询:
从这里可以明显看到,stress 进程的 CPU 使用率为 100%。
首先还是运行 stress 命令,但这次模拟 I/O 压力,即不停地执行 sync:
$ stress -i 1 --timeout 600
在第二个终端运行 uptime 查看平均负载的变化情况:
$ watch -d uptime ..., load average: 1.06, 0.58, 0.37
然后,第三个终端运行 mpstat 查看 CPU 使用率的变化情况:
从这里可以看到,1 分钟的平均负载会慢慢增加到 1.06,其中一个 CPU 的系统 CPU 使用率升高到了 23.87,而 iowait 高达 67.53%。这说明,平均负载的升高是由于 iowait 的升高。
那么到底是哪个进程,导致 iowait 这么高呢?我们还是用 pidstat 来查询:
(也可以使用 pidstat -d 命令)
可以发现,还是 stress 进程导致的。
当系统中运行进程超出 CPU 运行能力时,就会出现等待 CPU 的进程。 比如,我们还是使用 stress,模拟 8 个进程:
$ stress -c 8 --timeout 600
由于系统只有 2 个 CPU,明显比 8 个进程要少得多,因而,系统的 CPU 处于严重过载状态,平均负载高达 7.97
$ uptime ..., load average: 7.97, 5.93, 3.02
接着再运行 pidstat 来看一下进程的情况:
可以看出,8 个进程在争抢 2 个 CPU,每个进程等待 CPU 的时间(也就是代码块中的 %wait 列)高达 75%。这些超出 CPU 计算能力的进程,最终导致 CPU 过载。
再来归纳一下平均负载的理解。
平均负载提供了一个快速查看系统整体性能的手段,反映了整体的负载情况。但只看平均负载本身,我们并不能直接发现,到底是哪里出现了瓶颈。所以,在理解平均负载时,也要注意:
Das obige ist der detaillierte Inhalt vonWie soll Linux „Lastdurchschnitt' verstehen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!