


Tutorial zum maschinellen Lernen in Python für Anfänger: Erstellen Sie Schritt für Schritt Ihr erstes Modell für maschinelles Lernen
Maschinelles Lernen verändert die Art und Weise, wie wir mit der Welt interagieren, in unglaublichem Tempo. Von selbstfahrenden Autos bis hin zur medizinischen Diagnostik ist maschinelles Lernen mittlerweile in vielen verschiedenen Bereichen allgegenwärtig. Wenn Sie Ihre eigene Reise zum maschinellen Lernen beginnen möchten, dann ist dieses „Python-Tutorial zum maschinellen Lernen“ genau das Richtige für Sie. Wir helfen Ihnen Schritt für Schritt beim Aufbau Ihrer ersten Anwendung für maschinelles Lernen, beginnend mit grundlegenden Konzepten. 1. Verstehen Sie die Grundkonzepte des maschinellen Lernens
Maschinelles Lernen ist im Wesentlichen eine Disziplin, die es Computersystemen ermöglicht, automatisch aus Daten zu lernen und daraus Wissen zu extrahieren. Dadurch kann das System seine Leistung verbessern, ohne dass es „programmiert“ werden muss. Zu den gängigen Algorithmen für maschinelles Lernen gehören überwachtes Lernen, unüberwachtes Lernen und verstärkendes Lernen.
2. Wählen Sie eine geeignete Bibliothek für maschinelles LernenIn Python stehen viele verschiedene Bibliotheken für maschinelles Lernen zur Auswahl. Zu den beliebtesten gehören Scikit-Learn, Keras und
Tensorflow. Jede dieser Bibliotheken hat ihre eigenen Vor- und Nachteile, daher müssen Sie bei der Auswahl einer Bibliothek Ihre spezifischen Bedürfnisse berücksichtigen.
3. Bereiten Sie Ihre Daten vorMaschinelle Lernalgorithmen benötigen Daten zum Lernen. Sie können Daten aus einer Vielzahl von Quellen abrufen, darunter öffentliche Datensätze, das Web und Ihre eigene
Datenbank. Bevor Sie die Daten für das Training verwenden, müssen Sie sie vorverarbeiten, um die Verarbeitung durch den Algorithmus zu erleichtern.
4. Wählen Sie einen geeigneten Algorithmus für maschinelles LernenBasierend auf Ihren Daten und Ihrer Aufgabe müssen Sie einen geeigneten Algorithmus für maschinelles Lernen auswählen. Es stehen viele verschiedene Algorithmen zur Auswahl, darunter lineare Regression, logistische Regression, Entscheidungsbäume und Support-Vektor-Maschinen.
5. Trainieren Sie Ihr maschinelles LernmodellSobald Sie einen Algorithmus ausgewählt haben, müssen Sie ihn mithilfe von Trainingsdaten trainieren. Der Trainingsprozess umfasst die Eingabe von Daten in den Algorithmus und die Möglichkeit, dass der Algorithmus aus den Daten lernt. Nach Abschluss des Trainings verfügen Sie über ein trainiertes Modell, das neue Daten klassifizieren oder regressieren kann.
6. Bewerten Sie Ihr maschinelles LernmodellBevor Sie Ihr maschinelles Lernmodell auf reale Daten anwenden, müssen Sie es auswerten. Zu den gängigen Methoden zur Bewertung von Modellen gehören Präzision, Rückruf und F1-Score.
7. Stellen Sie Ihr maschinelles Lernmodell bereitSobald Sie mit Ihrem Modell für maschinelles Lernen zufrieden sind, können Sie es in der Produktion bereitstellen. Zu den gängigen Methoden zur Bereitstellung von Modellen gehören Cloud-Plattformen und Edge-Geräte.
8. Optimieren Sie Ihr maschinelles LernmodellMit der Zeit kann Ihr maschinelles Lernmodell veraltet sein. Um die Genauigkeit Ihres Modells aufrechtzuerhalten, müssen Sie es regelmäßig „optimieren“. Zu den gängigen Methoden zur Optimierung eines Modells gehören das erneute Trainieren des Modells, das Anpassen von Hyperparametern und die Verwendung verschiedener Algorithmen.
Das obige ist der detaillierte Inhalt vonTutorial zum maschinellen Lernen in Python für Anfänger: Erstellen Sie Schritt für Schritt Ihr erstes Modell für maschinelles Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...

Wie benutze ich den regulären Ausdruck, um das erste geschlossene Tag zu entsprechen und anzuhalten? Im Umgang mit HTML oder anderen Markup -Sprachen sind häufig regelmäßige Ausdrücke erforderlich, um ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.