Heim  >  Artikel  >  Datenbank  >  mysql集群数据一致性校验_MySQL

mysql集群数据一致性校验_MySQL

WBOY
WBOYOriginal
2016-06-01 13:26:121566Durchsuche

Mysql集群

bitsCN.com

      目前,mysql在互联网行业使用地如火如荼,很多大型网站都在使用MySQL数据库,通过搭建mysql主备集群,实现高性能,高可用的存储方案。mysql集群的共同特性是通过复制来实现主备间的同步,保证主备数据的一致性。这样才能保证读写分离,备库为主库分担压力,提高整个集群的可用性和性能。

     为什么需要数据一致性校验?由于大部分搭建mysql服务的都是PC集群,尤其是在集群达到一定规模后,硬件出故障几乎是必然的。mysql复制是异步复制,当主机出现故障时,就会出现丢数据的可能,造成主备数据不一致,无法正常对外提供服务。另外,当现有的PC集群容量不足时,需要对集群扩容,扩容就涉及到数据迁移。迁移一般都包括全量和增量,在不停服务的情况下,当迁移完数据后,需要校验数据的一致性,保证迁移后不对业务造成影响。

     什么是数据一致性?这里仅仅针对mysql,或是关系型数据库,一致性主要包括两方面,表结构一致和数据内容一致。一般情况下,表结构变更相对是少的,而且不一致的概率也很小,即使检查,也相对容易;而导致数据内容不一致的情况很多,所以我们更关心的数据内容的一致性。

      如何实现数据一致性校验?一种思路就是逐行逐字段比较主库和备库的表;另外一种思路是,不逐行逐字段比较,取而代之的是分别对主库和备库计算校验和,通过判断校验和是否相同,确定主备库数据是否一致。两种思路都很简单,第一种思路正确性高,但性能比较差,因为返回大量的结果集导致大量的网络IO和磁盘IO;而第二种思路则恰好相反,性能会更好,少了IO,多消耗了一些CPU资源(计算校验和),正确性不如第一种思路。但是考虑到生产环境下,数据时时刻刻都是动态变化的,就没那么简单了。通过对表加锁,可以保证我们在校验时,数据是静态的,待我们顺利完成校验后,再解锁。mysql自带命令CHECKSUM TABLE,就是通过锁表方式来保证数据是静态的。这种方式对于小表,访问量小的表还好,若表非常大,校验需要很长时间,生产环境是不能容忍的。既然要保持静态就需要锁表,可不可以缩短锁表时间呢?pt-table-checksum通过将表分片,每次只对一部分行上锁,这样在校验过程中,一时刻只有部分行被锁住,减少对业务的影响。

     目前业界使用比较广泛的是percona公司的pt-table-checksum,下文我将详细介绍该工具的使用和原理,并分析其不足以及可以改进的地方。

     pt-table-checksum工具通过在主库上执行一个校验和的sql语句,然后通过复制,相同语句会在从库执行(pt-table-checksum要求复制工作在语句级复制模式下)。通过replace...select语句将校验和结果存储在结果表,然后对比主库和从库的相同块的记录数目和校验和,判断主备库数据是否一致。这里要注意的是,  pt-table-checksum 不是对一个表仅作一个校验和,因为如果表特别大,将会对DB造成很大的负载,影响正常业务。一个表一个校验和就退化到mysql自带命令CHECKSUM TABLE了,不仅需要锁表,而且不准确。pt-table-checksum将表按用户设置的块大小,将表分成若干份,然后对每个块计算一个校验和。这样即使表特别大,分块后也只会锁住部分记录,对DB的负载压力也大大降低。由于多个表校验可以并发,可以大大提高校验效率,通过参数-max-load可以防止load过大。

     pt-table-checksum基本能满足我们的日常需求,但是它还有一些需要完善的地方,首先,仅仅支持表粒度的并发,当检查一个大表时,需要耗费大量的时间,另外多表并行执行时,并行度也不能通过参数的设置,而是通过--max-load间接设置。其次,通过分块生成校验和虽然加快了校验速度,但1000行算一个4字节的校验值(默认是一个块1000行),产生冲突的可能性很大,虽然pt-table-checksum设计的校验和算法很复杂。最后,由于校验和sql是分别在主库和备库上面执行,存在一定的时差,若在这个时间段,有新的数据写入,就会造成误判。所以哪位同学有兴趣,还可以对其进行进一步优化。

     最后,我简单介绍下pt-table-checksum的使用,关于里面的参数的配置我就不一一列举了,感兴趣的同学可以参考http://www.percona.com/doc/percona-toolkit/2.2/pt-table-checksum.html

1.创建用于校验的用户,并授权

grant all privileges on *.* to ptcheck@'%' identified by 'ptcheck';  

2.测试table_pt_check表结构

Create Table: CREATE TABLE `table_pt_check` (

  `c1` int(11) NOT NULL AUTO_INCREMENT,

  `c2` int(11) DEFAULT NULL,

  PRIMARY KEY (`c1`)

) ENGINE=InnoDB AUTO_INCREMENT=26672747 DEFAULT CHARSET=utf8

3.校验chuck库中 table_pt_check表

pt-table-checksum --host='127.0.0.1' --user='ptcheck' --password='ptcheck' --port=3306 --databases='chuck' --tables='table_pt_check' --replicate=test.checksums

--replicate=test.checksums,指定校验结果存储在test库中的checksums中。通过上述3个步骤就能检查主备库的数据是否一致了。

 

校验结果存储表结构如下:

Create Table: CREATE TABLE `checksums` (

  `db` char(64) NOT NULL, //库名

  `tbl` char(64) NOT NULL,  //表名

  `chunk` int(11) NOT NULL,  //分块号

  `chunk_time` float DEFAULT NULL, //分块执行时间

  `chunk_index` varchar(200) DEFAULT NULL, //分块使用的索引,主键索引或唯一索引

  `lower_boundary` text,  //分块的下界值

  `upper_boundary` text, //分块的上界值

  `this_crc` char(40) NOT NULL, //分块的哈希值

  `this_cnt` int(11) NOT NULL, //分块的记录数目

  `master_crc` char(40) DEFAULT NULL, //master上分块的哈希值

  `master_cnt` int(11) DEFAULT NULL, //master上分块的记录数目

  `ts` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,

  PRIMARY KEY (`db`,`tbl`,`chunk`),

  KEY `ts_db_tbl` (`ts`,`db`,`tbl`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8

校验主备是否一致的SQL如下:

SELECT db,

       tbl,

       Sum(this_cnt) AS total_rows,

       Count(*) AS chunks

FROM test.checksums

WHERE ( master_cnt this_cnt

          OR master_crc this_crc

          OR Isnull(master_crc) Isnull(this_crc) )

GROUP BY db, tbl; 

通过--explain参数可以展示pt-table-checksum在执行过程的SQL:

replace INTO `test`.`checksums` (db, tbl, chunk, chunk_index, lower_boundary, upper_boundary, this_cnt, this_crc)

select 'chuck', 'table_pt_check', '7', 'PRIMARY', '21685456', '26100570', COUNT(*) AS cnt, COALESCE(LOWER(CONV(BIT_XOR(CAST(CRC32(CONCAT_WS('#', `c1`, `c2`, CONCAT(ISNULL(`c2`)))) AS UNSIGNED)), 10, 16)), 0) AS crc FROM `chuck`.`table_pt_check` FORCE INDEX(`PRIMARY`) WHERE ((`c1` >= '21685456')) AND ((`c1`

注意:计算校验和的关键函数BIT_XOR,通过这个聚合函数,将分块中每一行每一列的纳入计算对象,理论上保证了通过一个校验和可以判断主备分块数据是否一致。

bitsCN.com
Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn