Heim >Backend-Entwicklung >Python-Tutorial >Warum behält die Feinabstimmung eines MLP-Modells anhand eines kleinen Datensatzes immer noch die gleiche Testgenauigkeit bei wie vorab trainierte Gewichte?

Warum behält die Feinabstimmung eines MLP-Modells anhand eines kleinen Datensatzes immer noch die gleiche Testgenauigkeit bei wie vorab trainierte Gewichte?

WBOY
WBOYnach vorne
2024-02-10 21:36:04639Durchsuche

为什么在小数据集上微调 MLP 模型,仍然保持与预训练权重相同的测试精度?

Frageninhalt

Ich habe ein einfaches MLP-Modell entworfen, um anhand von 6.000 Datenproben zu trainieren.

class mlp(nn.module):
    def __init__(self,input_dim=92, hidden_dim = 150, num_classes=2):
        super().__init__()
        self.input_dim = input_dim
        self.num_classes = num_classes
        self.hidden_dim = hidden_dim
        #self.softmax = nn.softmax(dim=1)

        self.layers = nn.sequential(
            nn.linear(self.input_dim, self.hidden_dim),
            nn.relu(),
            nn.linear(self.hidden_dim, self.hidden_dim),
            nn.relu(),
            nn.linear(self.hidden_dim, self.hidden_dim),
            nn.relu(),
            nn.linear(self.hidden_dim, self.num_classes),

        )

    def forward(self, x):
        x = self.layers(x)
        return x

und das Modell wird instanziiert

model = mlp(input_dim=input_dim, hidden_dim=hidden_dim, num_classes=num_classes).to(device)

optimizer = optimizer.adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
criterion = nn.crossentropyloss()

und Hyperparameter:

num_epoch = 300   # 200e3//len(train_loader)
learning_rate = 1e-3
batch_size = 64
device = torch.device("cuda")
seed = 42
torch.manual_seed(42)

Meine Implementierung folgt hauptsächlich dieser Frage. Ich speichere das Modell als vortrainierte Gewichte model_weights.pth.

model在测试数据集上的准确率是96.80%.

Dann habe ich weitere 50 Proben (in finetune_loader), an denen ich versuche, das Modell zu verfeinern:

model_finetune = MLP()
model_finetune.load_state_dict(torch.load('model_weights.pth'))
model_finetune.to(device)
model_finetune.train()
# train the network
for t in tqdm(range(num_epoch)):
  for i, data in enumerate(finetune_loader, 0):
    #def closure():
      # Get and prepare inputs
      inputs, targets = data
      inputs, targets = inputs.float(), targets.long()
      inputs, targets = inputs.to(device), targets.to(device)
      
      # Zero the gradients
      optimizer.zero_grad()
      # Perform forward pass
      outputs = model_finetune(inputs)
      # Compute loss
      loss = criterion(outputs, targets)
      # Perform backward pass
      loss.backward()
      #return loss
      optimizer.step()     # a

model_finetune.eval()
with torch.no_grad():
    outputs2 = model_finetune(test_data)
    #predicted_labels = outputs.squeeze().tolist()

    _, preds = torch.max(outputs2, 1)
    prediction_test = np.array(preds.cpu())
    accuracy_test_finetune = accuracy_score(y_test, prediction_test)
    accuracy_test_finetune
    
    Output: 0.9680851063829787

Ich habe es überprüft, die Genauigkeit bleibt dieselbe wie vor der Feinabstimmung des Modells auf 50 Stichproben, und auch die Ausgabewahrscheinlichkeiten sind dieselben.

Was könnte der Grund sein? Habe ich bei der Feinabstimmung des Codes Fehler gemacht?


Richtige Antwort


Sie müssen den Optimierer mit einem neuen Modell (model_finetune-Objekt) neu initialisieren. Derzeit scheint es, wie ich in Ihrem Code sehen kann, immer noch den Optimierer zu verwenden, der mit den alten Modellgewichten initialisiert wurde – model.parameters().

Das obige ist der detaillierte Inhalt vonWarum behält die Feinabstimmung eines MLP-Modells anhand eines kleinen Datensatzes immer noch die gleiche Testgenauigkeit bei wie vorab trainierte Gewichte?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Dieser Artikel ist reproduziert unter:stackoverflow.com. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen