bitsCN.com
这里的分表逻辑是根据t_group表的user_name组的个数来分的。
因为这种情况单独user_name字段上的索引就属于烂索引。起不了啥名明显的效果。
1、试验PROCEDURE.
DELIMITER $$
DROP PROCEDURE `t_girl`.`sp_split_table`$$
CREATE PROCEDURE `t_girl`.`sp_split_table`()
BEGIN
declare done int default 0;
declare v_user_name varchar(20) default '';
declare v_table_name varchar(64) default '';
-- Get all users' name.
declare cur1 cursor for select user_name from t_group group by user_name;
-- Deal with error or warnings.
declare continue handler for 1329 set done = 1;
-- Open cursor.
open cur1;
while done 1
do
fetch cur1 into v_user_name;
if not done then
-- Get table name.
set v_table_name = concat('t_group_',v_user_name);
-- Create new extra table.
set @stmt = concat('create table ',v_table_name,' like t_group');
prepare s1 from @stmt;
execute s1;
drop prepare s1;
-- Load data into it.
set @stmt = concat('insert into ',v_table_name,' select * from t_group where user_name = ''',v_user_name,'''');
prepare s1 from @stmt;
execute s1;
drop prepare s1;
end if;
end while;
-- Close cursor.
close cur1;
-- Free variable from memory.
set @stmt = NULL;
END$$
DELIMITER ;
2、试验表。
我们用一个有一千万条记录的表来做测试。
mysql> select count(*) from t_group;
+----------+
| count(*) |
+----------+
| 10388608 |
+----------+
1 row in set (0.00 sec)
表结构。
mysql> desc t_group;
+-------------+------------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+-------------------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
索引情况。
mysql> show index from t_group;
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| t_group | 0 | PRIMARY | 1 | id | A | 10388608 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_user_name | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 2 | money | A | 3776 | NULL | NULL | | BTREE | |
+---------+------------+------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
4 rows in set (0.00 sec)
PS:
idx_combination1 这个索引是必须的,因为要对user_name来GROUP BY。此时属于松散索引扫描!当然完了后你可以干掉她。
idx_user_name 这个索引是为了加快单独执行constant这种类型的查询。
我们要根据用户名来分表。
mysql> select user_name from t_group where 1 group by user_name;
+-----------+
| user_name |
+-----------+
| david |
| leo |
| livia |
| lucy |
| sarah |
| simon |
| sony |
| sunny |
+-----------+
8 rows in set (0.00 sec)
所以结果表应该是这样的。
mysql> show tables like 't_group_%';
+------------------------------+
| Tables_in_t_girl (t_group_%) |
+------------------------------+
| t_group_david |
| t_group_leo |
| t_group_livia |
| t_group_lucy |
| t_group_sarah |
| t_group_simon |
| t_group_sony |
| t_group_sunny |
+------------------------------+
8 rows in set (0.00 sec)
3、对比结果。
mysql> select count(*) from t_group where user_name = 'david';
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (1.71 sec)
执行了将近2秒。
mysql> select count(*) from t_group_david;
+----------+
| count(*) |
+----------+
| 1298576 |
+----------+
1 row in set (0.00 sec)
几乎是瞬间的。
mysql> select count(*) from t_group where user_name 'david';
+----------+
| count(*) |
+----------+
| 9090032 |
+----------+
1 row in set (9.26 sec)
执行了将近10秒,可以想象,这个是实际的项目中是不能忍受的。
mysql> select (select count(*) from t_group) - (select count(*) from t_group_david) as total;
+---------+
| total |
+---------+
| 9090032 |
+---------+
1 row in set (0.00 sec)
几乎是瞬间的。
我们来看看聚集函数。
对于原表的操作。
mysql> select min(money),max(money) from t_group where user_name = 'david';
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (0.00 sec)
最小,最大值都是FULL INDEX SCAN。所以是瞬间的。
mysql> select sum(money),avg(money) from t_group where user_name = 'david';
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (2.15 sec)
其他聚集函数的结果就不是FULL INDEX SCAN了。耗时2.15秒。
对于小表的操作。
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (1.50 sec)
最大最小值完全是FULL TABLE SCAN,耗时1.50秒,不划算。以此看来。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (1.68 sec)
取得这两个结果也是花了快2秒,快了一点。
我们来看看这个小表的结构。
mysql> desc t_group_david;
+-------------+------------------+------+-----+-------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+------------------+------+-----+-------------------+----------------+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+-------------+------------------+------+-----+-------------------+----------------+
4 rows in set (0.00 sec)
明显的user_name属性是多余的。那么就干掉它。
mysql> alter table t_group_david drop user_name;
Query OK, 1298576 rows affected (7.58 sec)
Records: 1298576 Duplicates: 0 Warnings: 0
现在来重新对小表运行查询
mysql> select min(money),max(money) from t_group_david;
+------------+------------+
| min(money) | max(money) |
+------------+------------+
| -6.41 | 500.59 |
+------------+------------+
1 row in set (0.00 sec)
此时是瞬间的。
mysql> select sum(money),avg(money) from t_group_david;
+--------------+------------+
| sum(money) | avg(money) |
+--------------+------------+
| 319992383.84 | 246.417910 |
+--------------+------------+
1 row in set (0.94 sec)
这次算是控制在一秒以内了。
mysql> Aborted
小总结一下:分出的小表的属性尽量越少越好。大胆的去干吧。bitsCN.com

InnoDbbufferpool reduziert die Scheiben -E/A durch Zwischenspeicherung von Daten und Indizieren von Seiten und Verbesserung der Datenbankleistung. Das Arbeitsprinzip umfasst: 1. Daten lesen: Daten von Bufferpool lesen; 2. Daten schreiben: Schreiben Sie nach der Änderung der Daten an Bufferpool und aktualisieren Sie sie regelmäßig auf Festplatte. 3. Cache -Management: Verwenden Sie den LRU -Algorithmus, um Cache -Seiten zu verwalten. 4. Lesemechanismus: Last benachbarte Datenseiten im Voraus. Durch die Größe des Bufferpool und die Verwendung mehrerer Instanzen kann die Datenbankleistung optimiert werden.

Im Vergleich zu anderen Programmiersprachen wird MySQL hauptsächlich zum Speichern und Verwalten von Daten verwendet, während andere Sprachen wie Python, Java und C für die logische Verarbeitung und Anwendungsentwicklung verwendet werden. MySQL ist bekannt für seine hohe Leistung, Skalierbarkeit und plattformübergreifende Unterstützung, die für Datenverwaltungsanforderungen geeignet sind, während andere Sprachen in ihren jeweiligen Bereichen wie Datenanalysen, Unternehmensanwendungen und Systemprogramme Vorteile haben.

MySQL ist es wert, gelernt zu werden, da es sich um ein leistungsstarkes Open -Source -Datenbankverwaltungssystem handelt, das für Datenspeicher, Verwaltung und Analyse geeignet ist. 1) MySQL ist eine relationale Datenbank, die SQL zum Betrieb von Daten verwendet und für die strukturierte Datenverwaltung geeignet ist. 2) Die SQL -Sprache ist der Schlüssel zur Interaktion mit MySQL und unterstützt CRUD -Operationen. 3) Das Arbeitsprinzip von MySQL umfasst Client/Server -Architektur, Speicher -Engine und Abfrageoptimierer. 4) Die grundlegende Nutzung umfasst das Erstellen von Datenbanken und Tabellen, und die erweiterte Verwendung umfasst das Verbinden von Tabellen mit dem Join. 5) Zu den häufigen Fehlern gehören Syntaxfehler und Erlaubnisprobleme, und die Debugging -Fähigkeiten umfassen die Überprüfung der Syntax und die Verwendung von Erklärungskenntnissen. 6) Die Leistungsoptimierung umfasst die Verwendung von Indizes, die Optimierung von SQL -Anweisungen und die regelmäßige Wartung von Datenbanken.

MySQL ist für Anfänger geeignet, um Datenbankfähigkeiten zu erlernen. 1. Installieren Sie MySQL Server- und Client -Tools. 2. Verstehen Sie grundlegende SQL -Abfragen, wie z. B. SELECT. 3.. Stammdatenoperationen: Daten erstellen, Daten einfügen, aktualisieren und löschen. 4. Lernen Sie fortgeschrittene Fähigkeiten: Unterabfragen und Fensterfunktionen. 5. Debugging und Optimierung: Überprüfen Sie die Syntax, verwenden Sie Indizes, vermeiden Sie die Auswahl*und verwenden Sie die Grenze.

MySQL verwaltet strukturierte Daten effizient durch Tabellenstruktur und SQL-Abfrage und implementiert Inter-Tisch-Beziehungen durch Fremdschlüssel. 1. Definieren Sie beim Erstellen einer Tabelle das Datenformat und das Typ. 2. Verwenden Sie fremde Schlüssel, um Beziehungen zwischen Tabellen aufzubauen. 3.. Verbessern Sie die Leistung durch Indexierung und Abfrageoptimierung. 4. regelmäßig Sicherung und Überwachung von Datenbanken, um die Datensicherheit und die Leistungsoptimierung der Daten zu gewährleisten.

MySQL ist ein Open Source Relational Database Management -System, das in der Webentwicklung häufig verwendet wird. Zu den wichtigsten Funktionen gehören: 1. unterstützt mehrere Speichermotoren wie InnoDB und MyISAM, geeignet für verschiedene Szenarien; 2. Bietet Master-Slave-Replikationsfunktionen, um Lastausgleich und Datensicherung zu erleichtern. 3.. Verbessern Sie die Abfrageeffizienz durch Abfrageoptimierung und Index.

SQL wird verwendet, um mit der MySQL -Datenbank zu interagieren, um die Datenzusatz, Löschung, Änderung, Inspektion und Datenbankdesign zu realisieren. 1) SQL führt Datenoperationen über SELECT, INSERT, INTERATE, UPDATE, Löschen von Anweisungen durch. 2) Verwenden Sie Anweisungen für Datenbankdesign und -verwaltung create, ändern, fallen. 3) Komplexe Abfragen und Datenanalysen werden über SQL implementiert, um die Effizienz der Geschäftsentscheidungen zu verbessern.

Zu den grundlegenden Operationen von MySQL gehört das Erstellen von Datenbanken, Tabellen und die Verwendung von SQL zur Durchführung von CRUD -Operationen für Daten. 1. Erstellen Sie eine Datenbank: createdatabasemy_first_db; 2. Erstellen Sie eine Tabelle: CreateTableBooks (IDINGAUTO_INCRECTIONPRIMARYKEY, Titelvarchar (100) Notnull, AuthorVarchar (100) Notnull, veröffentlicht_yearint); 3.. Daten einfügen: InsertIntoBooks (Titel, Autor, veröffentlicht_year) va


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung