Statistische parametrische Sprachsynthesemethoden haben aufgrund ihrer Flexibilität im Bereich der Sprachsynthese große Aufmerksamkeit erregt. In den letzten Jahren hat die Anwendung tiefer neuronaler Netzwerkmodelle im Bereich der maschinellen Lernforschung erhebliche Vorteile gegenüber herkömmlichen Methoden erzielt. Die Anwendung neuronaler netzwerkbasierter Modellierungsmethoden in der statistischen parametrischen Sprachsynthese hat sich allmählich vertieft und ist zu einer der gängigen Methoden der Sprachsynthese geworden.
Backend-Akustikmodellierung für die statistische parametrische Sprachsynthese ist das Thema dieses Artikels.

Das Backend-Framework der parametrischen Sprachsynthese
Wie in der Abbildung gezeigt, wird das Backend-Framework der statistischen parametrischen Sprachsynthese beschrieben, das hauptsächlich zwei Phasen umfasst: Training und Synthese.
In der Trainingsphase werden die Sprachwellenformen und entsprechenden Textmerkmale in der Soundbibliothek als Eingabe verwendet. Sprachwellenformen werden durch einen Vocoder extrahiert und mit Textmerkmalen zur akustischen Modellierung kombiniert.
In der Synthesephase werden gemäß dem trainierten akustischen Modell die zu synthetisierenden Textmerkmale eingegeben und die entsprechenden akustischen Merkmale vorhergesagt. Die vorhergesagten akustischen Merkmale werden dann mithilfe eines Vocoders in Sprachwellenformen umgewandelt. Vocoder- und Akustikmodelle sind Schlüsselkomponenten in statistischen parametrischen Sprachsynthesesystemen.
Das Quellfiltermodell der Spracherzeugung wird verwendet, um das Kurzzeitspektrum der Sprache während des Parametrisierungsprozesses der Sprachwellenform in Grundfrequenz und Spektralhüllkurve zu unterteilen. Normalerweise erhalten wir die Anregungseigenschaften von Sprache durch Analyse von Zeitbereichswellenformen oder Frequenzbereichsharmonischen und entfernen dann die Periodizität von Zeit und Frequenz aus dem Amplitudenspektrum, das durch die Kurzzeit-Fourier-Transformation der Sprachwellenform erhalten wird, um das Spektrumpaket von zu erhalten Rede. Netzwerk. Diese Methode kann uns helfen, Sprachsignale besser zu verstehen und zu verarbeiten.
Aufgrund der höheren Dimensionalität der Spektralhülle wird die Modellierung schwieriger, sodass es oft notwendig ist, die Dimensionalität der Spektralhülle zu reduzieren. Die Rekonstruktion der Sprachwellenform ist der umgekehrte Prozess zur Wiederherstellung der ursprünglichen Sprache aus den akustischen Parametern der Sprache. Durch die Angabe der Grundfrequenz, der spektralen Hüllkurve und der Anregungseigenschaften der Sprache in Kombination mit geeigneten Phasenbeschränkungen kann das STFT-Amplitudenspektrum rekonstruiert werden.
Die Dauermodellierung ist ein weiteres Modul der statistischen parametrischen Sprachsynthese. Für die Dauermodellierung ist kein Vocoder erforderlich. Das Grundgerüst ähnelt der akustischen Modellierung. Statistische Modelle werden verwendet, um die Wahrscheinlichkeitsverteilung entsprechender Zeitlängen gegebener Textmerkmale zu modellieren.
Nach mehr als 20 Jahren Entwicklungszeit hat sich die HMM-basierte statistische Parameter-Sprachsynthesemethode zu einer ausgereiften Sprachsynthesemethode entwickelt.
In diesem Abschnitt werden das Hidden-Markov-Modell und seine theoretischen Grundlagen vorgestellt. In Kombination mit bestimmten Phasenbeschränkungen wird das STFT-Amplitudenspektrum rekonstruiert. Die Dauermodellierung ist ein weiteres Modul der statistischen parametrischen Sprachsynthese. Für die Dauermodellierung ist kein Vocoder erforderlich. Das Grundgerüst ähnelt der akustischen Modellierung. Statistische Modelle werden verwendet, um die Wahrscheinlichkeitsverteilung entsprechender Zeitlängen gegebener Textmerkmale zu modellieren. Nach mehr als 20 Jahren Entwicklungszeit hat sich die auf HMM basierende Sprachsynthesemethode mit statistischen Parametern zu einer ausgereiften Sprachsynthesemethode entwickelt.
Das Hidden-Markov-Modell ist ein probabilistisches Modell zur Modellierung von Sequenzen, das aus einer Reihe versteckter Zustandsvariablen und einer Reihe von Beobachtungsvariablen besteht. Das HMM-Modell basiert auf zwei Annahmen.
Die Zustandsvariable gehorcht der Markov-Kette erster Ordnung, das heißt, der aktuelle Zustand hängt nur mit dem vorherigen Zustand zusammen, wie in Formel (1) gezeigt.

Die Wahrscheinlichkeitsverteilung der beobachteten Variablen zu einem bestimmten Zeitpunkt bezieht sich nur auf den Zustand zum aktuellen Zeitpunkt und hat nichts mit dem Zustand oder den beobachteten Variablen zu anderen Zeitpunkten zu tun, wie in Gleichung (2) dargestellt. .

Normalerweise bildet

im HMM-Modell geschickt die Zustandsübergangsmatrix A des HMM, und die Wahrscheinlichkeitsdichte der beobachteten Variablen beträgt:

Das ist es Es ist erwähnenswert, dass die HMM-Ausgabewahrscheinlichkeit:

Das Kernprinzip der akustischen Modellierung in der HMM-basierten statistischen parametrischen Sprachsynthesemethode besteht darin, das HMM-Modell zu verwenden, um die akustische Merkmalssequenz von Sprache in einer bestimmten Situation probabilistisch zu modellieren .
Die Konfiguration des gesamten Systems umfasst die Auswahl sprachakustischer Funktionen, die Auswahl von Modellierungseinheiten und die Konfiguration von HMM-Modellen. Zu den akustischen Merkmalen in Sprachsynthesesystemen gehören Anregungsmerkmale und spektrale Merkmale.
Um die Schwierigkeit der HMM-Modellierung bei der Auswahl von Spektralmerkmalen zu verringern, werden im Allgemeinen niedrigdimensionale Spektraldarstellungen verwendet, die die Korrelation zwischen Dimensionen beseitigen, wie z. B. Mel-Cepstrum- und Linienspektrumpaarmerkmale. In Anbetracht der kurzfristigen stationären Eigenschaften von Sprachsignalen und der Modellierungsfähigkeit von HM modellieren HMMs in Sprachsynthesesystemen normalerweise Einheiten auf Phonemebene, wie beispielsweise Vokaleinheiten im Chinesischen. Aufgrund der zeitlichen Eigenschaften von Sprache ist die Topologie von HMM bei der Audiomodellierung häufig ein einseitiger Durchlaufzustand von links nach rechts.

HMM-basiertes Sprachsynthesesystem mit statistischen Parametern
Die Abbildung zeigt das Framework des HMM-basierten Sprachsynthesesystems mit statistischen Parametern. Es ist in die Ausbildungsphase und die umfassende Phase unterteilt. Die Trainingsphase umfasst die Extraktion sprachakustischer Merkmale und das HMM-Modelltraining. Da das HMM-Modell Phoneme als Modellierungseinheiten verwendet, werden normalerweise drei kontextbezogene Phoneme modelliert, um die Modellierungsgenauigkeit zu verbessern.
Im ersten Systemtrainingsprozess wird die Untergrenze der Varianz des HMM-Modells geschätzt, dann wird das Einton-HMM-Modell als Modellinitialisierungsparameter trainiert, dann wird das kontextbezogene Drei-Phonem-HMM-Modell trainiert, und schließlich wird eine Mn-Druckclusterung basierend auf dem Entscheidungsbaum durchgeführt.
In der Synthesephase wird zunächst der Text analysiert, mit der vorhergesagten Zeitlänge kombiniert, die kontextbezogene HMM-Modellsequenz basierend auf dem Entscheidungsbaum bestimmt und anschließend die kontinuierliche akustische Merkmalssequenz durch die Maximum-Likelihood-Parametergenerierung erhalten Algorithmus, und die Sprachwellenform wird vom Synthesizer synthetisiert. Auf HMM basierende statistische parametrische Sprachsynthesesysteme sind zu glatt; ein Grund dafür ist die begrenzte Modellierungsfähigkeit von HMM.
In den letzten Jahren hat sich Deep Learning als Zweig des maschinellen Lernens rasant weiterentwickelt. Unter Deep Learning versteht man die Verwendung von Netzwerkmodellen, die aus mehreren nichtlinearen Transformationen und mehreren Verarbeitungsschichten bestehen, nämlich neuronalen Netzen. Aufgrund der hervorragenden Modellierungsfähigkeiten von DNN und Zoll wird die auf DNN und RNN basierende akustische Modellierungsmethode auf die statistische parametrische Sprachsynthese angewendet, und ihre Wirkung ist besser als die auf HMM basierende akustische Modellierungsmethode.
Es ist mittlerweile die gängige Methode der statistischen parametrischen Sprachsynthese-Akustikmodellierung. Auf DNN und RNN basierende Sprachsynthesesysteme sind im Systemrahmen ähnlich.

Rahmendiagramm der auf einem neuronalen Netzwerk basierenden Sprachsynthesemethode
Wie in der Abbildung gezeigt, handelt es sich bei den Eingabemerkmalen in der Abbildung um aus dem Text extrahierte Merkmale, d. h. zur Beschreibung werden diskrete oder kontinuierliche numerische Merkmale verwendet Text.
Das Training statistischer parametrischer Sprachsynthesesysteme basierend auf DNN und RNN übernimmt normalerweise Trainingskriterien und verwendet den BP-Algorithmus und den SGD-Algorithmus, um Modellparameter so zu aktualisieren, dass die vorhergesagten akustischen Parameter den natürlichen akustischen Parametern so nahe wie möglich kommen. In der Synthesephase werden Textmerkmale aus dem synthetisierten Text extrahiert, dann werden die entsprechenden akustischen Parameter über DNN oder RNN vorhergesagt und schließlich wird die Sprachwellenform über den Vocoder synthetisiert.
Derzeit werden auf DNN und RNN basierende Modellierungsmethoden hauptsächlich auf sprachakustische Parameter angewendet, einschließlich Grundfrequenz- und Spektralparameter. Informationen zur Dauer müssen noch über andere Systeme abgerufen werden. Darüber hinaus müssen die Eingabe- und Ausgabefunktionen von DNN- und RNN-Modellen zeitlich angepasst werden.
Das obige ist der detaillierte Inhalt vonGrundprinzipien der intelligenten Sprachsynthese. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。本文包括的内容如下:简介LazyPredict模块的安装在分类模型中实施LazyPredict

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version
