suchen
HeimTechnologie-PeripheriegeräteKIMethoden zur Datengenerierung, wie nutzt man Deep-Glaubens-Netzwerke?

Methoden zur Datengenerierung, wie nutzt man Deep-Glaubens-Netzwerke?

Jan 23, 2024 am 09:00 AM
深度学习künstliches neuronales Netzwerk

Methoden zur Datengenerierung, wie nutzt man Deep-Glaubens-Netzwerke?

Deep Believe Network ist ein tiefes neuronales Netzwerk, das auf ungerichteten Graphen basiert und hauptsächlich in generativen Modellen verwendet wird. Generative Modelle werden verwendet, um neue Datenproben zu generieren, die dem Trainingsdatensatz ähneln, sodass Deep-Believe-Netzwerke zur Datengenerierung verwendet werden können.

Das tiefe Glaubensnetzwerk besteht aus mehreren Schichten und Neuronen. Jede Schicht enthält mehrere Neuronen und jedes Neuron ist mit allen Neuronen in der vorherigen Schicht verbunden. Es gibt jedoch keine direkten Verbindungen zwischen Neuronen in verschiedenen Schichten. In einem Deep-Believe-Netzwerk repräsentiert jede Ebene eine Reihe binärer Zufallsvariablen. Die Verbindungen zwischen den Ebenen sind ungerichtet, was bedeutet, dass die Ausgabe jeder Ebene andere Ebenen beeinflussen kann, es jedoch keine direkte Rückmeldung gibt.

Der Entstehungsprozess eines tiefen Glaubensnetzwerks umfasst zwei Phasen: unbeaufsichtigtes Vortraining und überwachte Feinabstimmung.

In der unbeaufsichtigten Vortrainingsphase baut das Deep-Believe-Netzwerk das Modell auf, indem es die Funktionen im Trainingsdatensatz lernt. In dieser Phase wird jede Ebene als Restricted Boltzmann Machine (RBM) behandelt, ein ungerichtetes grafisches Modell zum Lernen von Wahrscheinlichkeitsverteilungen. Jedes RBM im Deep-Believe-Netzwerk wird zum Erlernen einer bestimmten Funktionsebene verwendet. Der Lernprozess von RBM umfasst zwei Schritte: Berechnen Sie zunächst für jede Probe die Energie unter dem aktuellen Gewicht. Berechnen Sie anschließend für jedes Gewicht den entsprechenden Gradienten und verwenden Sie den Gradientenabstiegsalgorithmus, um das Gewicht zu aktualisieren. Dieser Vorgang wird mehrmals wiederholt, bis das RBM die Eigenschaften des Trainingsdatensatzes lernt.

In der überwachten Feinabstimmungsphase verwendet das Deep-Believe-Netzwerk den Backpropagation-Algorithmus, um das Netzwerk so abzustimmen, dass es besser an den spezifischen Datensatz passt. In dieser Phase wird das Deep-Believe-Netzwerk als mehrschichtiges Perzeptron (MLP) betrachtet, wobei jede Schicht mit der nächsten Schicht verbunden ist. Netzwerke werden darauf trainiert, bestimmte Ergebnisse vorherzusagen, beispielsweise Klassifizierungsbezeichnungen oder Regressionswerte. Durch den Backpropagation-Algorithmus aktualisiert das Netzwerk Gewichtungen und Verzerrungen basierend auf der Differenz zwischen den vorhergesagten Ergebnissen und der tatsächlichen Ausgabe, um den Fehler schrittweise zu reduzieren. Dieser Prozess wird mehrmals wiederholt, bis die Leistung des Netzwerks das gewünschte Niveau erreicht. Durch überwachte Feinabstimmung können sich Deep-Believe-Netzwerke besser an bestimmte Aufgaben anpassen und ihre Vorhersagegenauigkeit verbessern.

Nehmen wir zum Beispiel an, wir haben einen Datensatz, der Bilder von handgeschriebenen Ziffern enthält. Wir wollen ein Deep-Glaubens-Netzwerk nutzen, um neue Bilder handgeschriebener Ziffern zu generieren.

Zuerst müssen wir alle Bilder in ein Binärformat konvertieren und sie in das Deep-Glaubens-Netzwerk einspeisen.

In der unbeaufsichtigten Vortrainingsphase lernt das Deep-Believe-Netzwerk die Merkmale in diesen Bildern. In der überwachten Feinabstimmungsphase wird das Netzwerk darauf trainiert, die numerische Bezeichnung für jedes Bild vorherzusagen. Sobald das Training abgeschlossen ist, können wir das Deep-Believe-Netzwerk nutzen, um neue Bilder handgeschriebener Ziffern zu generieren. Um neue Bilder zu erzeugen, können wir mit zufälligem Rauschen beginnen und dann ein Deep-Believe-Netzwerk verwenden, um binäre Pixelwerte zu generieren.

Schließlich können wir diese Pixelwerte wieder in das Bildformat konvertieren, um ein neues handgeschriebenes Ziffernbild zu generieren.

Zusammenfassend ist das Deep-Believe-Netzwerk ein leistungsstarkes generatives Modell, mit dem neue Datenproben generiert werden können, die dem Trainingsdatensatz ähneln. Der Generierungsprozess eines Deep-Believe-Netzwerks umfasst zwei Phasen: unbeaufsichtigtes Vortraining und überwachte Feinabstimmung. Durch das Erlernen von Merkmalen aus dem Datensatz können Deep-Believe-Netzwerke neue Datenproben generieren, wodurch der Datensatz erweitert und die Leistung des Modells verbessert wird.

Das obige ist der detaillierte Inhalt vonMethoden zur Datengenerierung, wie nutzt man Deep-Glaubens-Netzwerke?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Dieser Artikel ist reproduziert unter:网易伏羲. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen
Sie müssen KI am Arbeitsplatz hinter einem Schleier der Unwissenheit bauenSie müssen KI am Arbeitsplatz hinter einem Schleier der Unwissenheit bauenApr 29, 2025 am 11:15 AM

In John Rawls 'wegweisendem Buch von 1971 schlug er ein Gedankenexperiment vor, das wir als Kern des heutigen KI-Designs und der Entscheidungsfindung verwenden sollten: den Schleier der Unwissenheit. Diese Philosophie bietet ein einfaches Instrument zum Verständnis von Eigenkapital und bietet auch eine Entwurf für Führungskräfte, um dieses Verständnis zu nutzen, um KI auf gerechte Weise zu entwerfen und umzusetzen. Stellen Sie sich vor, Sie treffen Regeln für eine neue Gesellschaft. Aber es gibt eine Prämisse: Sie wissen nicht im Voraus, welche Rolle Sie in dieser Gesellschaft spielen werden. Möglicherweise sind Sie reich oder arm, gesund oder behindert, gehören einer Mehrheit oder einer marginalen Minderheit. Der Betrieb unter diesem "Schleier der Unwissenheit" verhindert, dass Regelmacher Entscheidungen treffen, die selbst zugute kommen. Im Gegenteil, die Menschen werden motivierter sein, die Öffentlichkeit zu formulieren

Entscheidungen, Entscheidungen… nächste Schritte für die praktische angewandte KIEntscheidungen, Entscheidungen… nächste Schritte für die praktische angewandte KIApr 29, 2025 am 11:14 AM

Zahlreiche Unternehmen sind auf Roboterprozessautomatisierung (RPA) spezialisiert und bieten Bots, um sich wiederholende Aufgaben zu automatisieren - Uipath, Automatisierung überall, blaues Prisma und andere. In der Zwischenzeit verarbeiten Sie Mining, Orchestrierung und intelligente Dokumentenverarbeitung Speciali

Die Agenten kommen - mehr darüber, was wir neben AI -Partnern tun werdenDie Agenten kommen - mehr darüber, was wir neben AI -Partnern tun werdenApr 29, 2025 am 11:13 AM

Die Zukunft der KI bewegt sich über die einfache Wortvorhersage und die Konversationsimulation hinaus. KI -Agenten sind aufgetaucht, in der Lage, unabhängige Handlungen und Aufgabenabschluss zu erledigen. Diese Verschiebung zeigt sich bereits in Tools wie dem Claude von Anthropic. KI -Agenten: Forschung a

Warum Empathie wichtiger ist als die Kontrolle für Führungskräfte in einer KI-gesteuerten ZukunftWarum Empathie wichtiger ist als die Kontrolle für Führungskräfte in einer KI-gesteuerten ZukunftApr 29, 2025 am 11:12 AM

Schnelle technologische Fortschritte erfordern eine zukunftsweisende Perspektive auf die Zukunft der Arbeit. Was passiert, wenn die KI nur die Produktivitätsverstärkung überschreitet und unsere gesellschaftlichen Strukturen prägt? Topher McDougals bevorstehendes Buch Gaia Wakes:

KI für die Produktklassifizierung: Können Maschinen das Steuergesetz meistern?KI für die Produktklassifizierung: Können Maschinen das Steuergesetz meistern?Apr 29, 2025 am 11:11 AM

Die Produktklassifizierung, die häufig komplexe Codes wie "HS 8471.30" aus Systemen wie dem harmonisierten System (HS) umfasst, ist für den internationalen Handel und den Inlandsumsatz von entscheidender Bedeutung. Diese Codes gewährleisten den korrekten Steuerantrag und wirken sich auf jeden Inv aus

Könnte die Nachfrage des Rechenzentrums einen Klima -Tech -Rebound auslösen?Könnte die Nachfrage des Rechenzentrums einen Klima -Tech -Rebound auslösen?Apr 29, 2025 am 11:10 AM

Die Zukunft des Energieverbrauchs in Rechenzentren und Klimaschutzinvestitionen In diesem Artikel wird der Anstieg des Energieverbrauchs in Rechenzentren untersucht, die von KI und ihren Auswirkungen auf den Klimawandel angetrieben werden, und analysiert innovative Lösungen und politische Empfehlungen, um diese Herausforderung zu befriedigen. Herausforderungen des Energiebedarfs: Zentren im großen und ultra-großen Maßstab verbrauchen enorme Macht, vergleichbar mit der Summe von Hunderttausenden gewöhnlicher nordamerikanischer Familien und aufstrebende AI-Zentren im Bereich Ultra-Large-Scale-Zentren verbrauchen Dutzende von Zeiten mehr mehr Macht als diese. In den ersten acht Monaten des 2024 haben Microsoft, Meta, Google und Amazon rund 125 Milliarden US -Dollar in den Bau und den Betrieb von AI -Rechenzentren investiert (JP Morgan, 2024) (Tabelle 1). Der wachsende Energiebedarf ist sowohl eine Herausforderung als auch eine Chance. Laut Kanarischen Medien der drohende Elektrizität

AI und Hollywoods nächstes goldenes ZeitalterAI und Hollywoods nächstes goldenes ZeitalterApr 29, 2025 am 11:09 AM

Generative AI revolutioniert die Film- und Fernsehproduktion. Das Ray 2-Modell von Luma sowie das Gen-4 von Runway, Openai von Sora, Google's VEO und andere neue Modelle verbessern die Qualität der generierten Videos mit beispielloser Geschwindigkeit. Diese Modelle können problemlos komplexe Spezialeffekte und realistische Szenen erzeugen, selbst kurze Videoclips und Kameraser-Bewegungseffekte wurden erreicht. Während die Manipulation und Konsistenz dieser Tools noch verbessert werden müssen, ist die Geschwindigkeit des Fortschritts erstaunlich. Generatives Video wird zu einem unabhängigen Medium. Einige Modelle sind gut in der Animationsproduktion, andere sind gut in Live-Action-Bildern. Es ist erwähnenswert, dass Adobe's Firefly und Moonvalleys MA

Wird Chatgpt langsam AIs größtes Ja-Mann?Wird Chatgpt langsam AIs größtes Ja-Mann?Apr 29, 2025 am 11:08 AM

ChatGPT -Benutzererfahrung lehnt ab: Ist es ein Modellverschlechterungs- oder Benutzererwartungen? In jüngster Zeit haben sich eine große Anzahl von ChatGPT bezahlten Nutzern über ihre Leistungsverschlechterung beschwert, die weit verbreitete Aufmerksamkeit erregt hat. Die Benutzer berichteten über langsamere Antworten auf Modelle, kürzere Antworten, mangelnde Hilfe und noch mehr Halluzinationen. Einige Benutzer äußerten Unzufriedenheit in den sozialen Medien und wiesen darauf hin, dass ChatGPT zu „zu schmeichelhaft“ geworden ist, und neigt dazu, Benutzeransichten zu überprüfen, anstatt ein kritisches Feedback zu geben. Dies wirkt sich nicht nur auf die Benutzererfahrung aus, sondern verleiht Unternehmenskunden auch tatsächliche Verluste, wie z. B. reduzierte Produktivität und Rechenressourcenverschwendung. Nachweis der Leistungsverschlechterung Viele Benutzer haben einen signifikanten Verschlechterung der Chatgpt-Leistung gemeldet, insbesondere in älteren Modellen wie GPT-4 (die Ende dieses Monats bald vom Service abgebrochen werden). Das

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool