Analyse künstlicher neuronaler Netzlernmethoden im Deep Learning
Deep Learning ist ein Zweig des maschinellen Lernens, der darauf abzielt, die Fähigkeiten des Gehirns bei der Datenverarbeitung zu simulieren. Es löst Probleme durch den Aufbau künstlicher neuronaler Netzwerkmodelle, die es Maschinen ermöglichen, ohne Aufsicht zu lernen. Dieser Ansatz ermöglicht es Maschinen, komplexe Muster und Merkmale automatisch zu extrahieren und zu verstehen. Durch Deep Learning können Maschinen aus großen Datenmengen lernen und hochpräzise Vorhersagen und Entscheidungen liefern. Dadurch konnte Deep Learning große Erfolge in Bereichen wie Computer Vision, Verarbeitung natürlicher Sprache und Spracherkennung erzielen.
Um die Funktion neuronaler Netze zu verstehen, betrachten Sie die Übertragung von Impulsen in Neuronen. Nachdem Daten vom Dendritenterminal empfangen wurden, werden sie im Zellkern gewichtet (mit w multipliziert) und dann entlang des Axons weitergeleitet und mit einer anderen Nervenzelle verbunden. Axone (x) sind der Ausgang eines Neurons und werden zum Eingang eines anderen Neurons, wodurch die Informationsübertragung zwischen den Nerven sichergestellt wird.
Um am Computer zu modellieren und zu trainieren, müssen wir den Algorithmus der Operation verstehen und durch Eingabe des Befehls die Ausgabe erhalten.
Hier drücken wir es mathematisch wie folgt aus:

In der obigen Abbildung ist ein zweischichtiges neuronales Netzwerk dargestellt, das eine verborgene Schicht aus 4 Neuronen und eine Ausgabeschicht mit einem einzelnen Neuron enthält. Es ist zu beachten, dass die Anzahl der Eingabeschichten keinen Einfluss auf den Betrieb des neuronalen Netzwerks hat. Die Anzahl der Neuronen in diesen Schichten und die Anzahl der Eingabewerte werden durch die Parameter w und b dargestellt. Insbesondere ist die Eingabe in die verborgene Ebene x und die Eingabe in die Ausgabeebene ist der Wert von a.
Hyperbolischer Tangens, ReLU, Leaky ReLU und andere Funktionen können Sigmoid als differenzierbare Aktivierungsfunktion ersetzen und in der Schicht verwendet werden, und die Gewichte werden durch die Ableitungsoperation bei der Backpropagation aktualisiert.
Die ReLU-Aktivierungsfunktion wird häufig beim Deep Learning verwendet. Da die Teile der ReLU-Funktion, die kleiner als 0 sind, nicht differenzierbar sind, lernen sie während des Trainings nicht. Die Leaky-ReLU-Aktivierungsfunktion löst dieses Problem. Sie ist in Teilen kleiner als 0 differenzierbar und lernt auf jeden Fall. Dies macht Leaky ReLU in einigen Szenarien effektiver als ReLU.
Das obige ist der detaillierte Inhalt vonAnalyse künstlicher neuronaler Netzlernmethoden im Deep Learning. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

KI verstärken die Zubereitung der Lebensmittel KI -Systeme werden während der Nahten immer noch in der Zubereitung von Nahrungsmitteln eingesetzt. KI-gesteuerte Roboter werden in Küchen verwendet, um Aufgaben zur Zubereitung von Lebensmitteln zu automatisieren, z.

Einführung Das Verständnis der Namespaces, Scopes und des Verhaltens von Variablen in Python -Funktionen ist entscheidend, um effizient zu schreiben und Laufzeitfehler oder Ausnahmen zu vermeiden. In diesem Artikel werden wir uns mit verschiedenen ASP befassen

Einführung Stellen Sie sich vor, Sie gehen durch eine Kunstgalerie, umgeben von lebhaften Gemälden und Skulpturen. Was wäre, wenn Sie jedem Stück eine Frage stellen und eine sinnvolle Antwort erhalten könnten? Sie könnten fragen: „Welche Geschichte erzählst du?

In diesem Monat hat MediaTek in diesem Monat eine Reihe von Ankündigungen gemacht, darunter das neue Kompanio Ultra und die Abmessung 9400. Diese Produkte füllen die traditionelleren Teile von MediaTeks Geschäft aus, die Chips für Smartphone enthalten

#1 Google gestartet Agent2Agent Die Geschichte: Es ist Montagmorgen. Als mit KI betriebener Personalvermittler arbeiten Sie intelligenter, nicht härter. Sie melden sich im Dashboard Ihres Unternehmens auf Ihrem Telefon an. Es sagt Ihnen, dass drei kritische Rollen bezogen, überprüft und geplant wurden

Ich würde vermuten, dass du es sein musst. Wir alle scheinen zu wissen, dass Psychobabble aus verschiedenen Geschwätzern besteht, die verschiedene psychologische Terminologie mischen und oft entweder unverständlich oder völlig unsinnig sind. Alles was Sie tun müssen, um fo zu spucken

Laut einer neuen Studie, die diese Woche veröffentlicht wurde, wurden im Jahr 2022 nur 9,5% der im Jahr 2022 hergestellten Kunststoffe aus recycelten Materialien hergestellt. In der Zwischenzeit häufen sich Plastik weiter in Deponien - und Ökosystemen - um die Welt. Aber Hilfe ist unterwegs. Ein Team von Engin

Mein jüngstes Gespräch mit Andy Macmillan, CEO der führenden Unternehmensanalyse -Plattform Alteryx, zeigte diese kritische, aber unterschätzte Rolle in der KI -Revolution. Wie Macmillan erklärt, die Lücke zwischen Rohgeschäftsdaten und KI-fertigen Informat


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft