suchen
HeimTechnologie-PeripheriegeräteKIEin tiefer Einblick in die Konzepte der Mustererkennung beim maschinellen Lernen

Ein tiefer Einblick in die Konzepte der Mustererkennung beim maschinellen Lernen

Das menschliche Gehirn verfügt über Mustererkennungsfähigkeiten und kann die Informationen, die es sieht, problemlos mit den Informationen in seinem Gedächtnis abgleichen. Beim maschinellen Lernen ist die Mustererkennung eine Technik zum Abgleichen von Informationen in einer Datenbank mit eingehenden Daten durch die Identifizierung gemeinsamer Merkmale.

Wie funktioniert die Mustererkennung?

1. Datenerfassung und Vorverarbeitung

Das Mustererkennungssystem kann verschiedene Arten von Daten wie Text, Video, Audio usw. verarbeiten und eine Datenvorverarbeitung durchführen. Diese Phase ist kritisch und konzentriert sich auf die Datenerweiterung und die Filterung von Systemrauschen.

2. Datendarstellung

Neuronales Netzwerk analysiert gefilterte Daten, um aussagekräftige Informationen zu erhalten und zu entdecken. Diese extrahierten Merkmale werden in Inhalte segmentiert, die das Muster bilden.

3. Entscheidungsfindung

Die identifizierten inhärenten Muster und Erkenntnisse werden in das Modell l zur Kategorievorhersage, Clustervorhersage oder Wertvorhersage basierend auf Geschäftsanwendungsfällen eingespeist.

Zwei Fälle von Mustererkennung

Mustererkennung ist ein Zweig des maschinellen Lernens, der den Schwerpunkt auf die Erkennung von Datenmustern legt. Bei der Mustererkennung handelt es sich in der Regel um eine Klassifikations- oder Kategorisierungsaufgabe. Diese Kategorien werden entweder vom System definiert oder anhand von Ähnlichkeiten zwischen Mustern gelernt.

Die explorative Mustererkennung

zielt darauf ab, allgemeine Datenmuster zu identifizieren. Diese Algorithmen konzentrieren sich darauf, versteckte Muster oder Merkmalscluster in Daten zu finden. Sie basieren hauptsächlich auf einer unbeaufsichtigten Klassifizierung, die Eingabemuster undefinierten Klassen zuordnet.

Deskriptive Mustererkennung

zielt darauf ab, erkannte Muster zu klassifizieren und sie als Teil vordefinierter Klassen zu identifizieren. Es wird hauptsächlich eine überwachte Klassifizierung verwendet.

Arten von Mustererkennungsmodellen

Die Hauptmethoden der Mustererkennung definieren verschiedene Arten von Modellen, die häufig verwendet werden:

Statistische Mustererkennung

Wie der Name schon sagt, basiert dieses Modell auf historischen Datenpunkte und statistische Techniken von Lernen Sie Merkmale und Muster aus Daten. Dazu gehört das Sammeln, Studieren und Analysieren von Beobachtungen, um allgemeine Regeln oder Konzepte abzuleiten, die auf neue, unsichtbare Beobachtungen angewendet werden können.

Muster werden nach ihren Merkmalen gruppiert, und die Anzahl der Merkmale bestimmt, wie das Muster als Punkt im d-dimensionalen Raum betrachtet wird. Es folgt dieser einfachen Technik zum Identifizieren von Mustern:

bedeutet, dass es möglich ist, verwandte Arten von Objekten durch einen n-dimensionalen Vektorraum zu identifizieren.

Verallgemeinerungen, Regeln und Konzepte, die aus einer gegebenen Darstellung einer Reihe von Beispielen abgeleitet und daher auf unsichtbare Datenpunkte angewendet werden können.

Bewertung, Genauigkeit und Vertrauensschätzungen von Modellen, die die Systemleistung bewerten.

Syntaktische Mustererkennung

Aufgrund ihrer potenziellen Komplexität ist es schwierig, Muster, die strukturelle oder relationale Informationen enthalten, in Merkmalsvektoren zu quantifizieren. In diesem Fall reicht die statistische Mustererkennung nicht aus. Daten können jedoch anhand struktureller Ähnlichkeiten in Datenmustern klassifiziert werden. Aus diesem Grund eignet sich die Technologie zur syntaktischen Mustererkennung für die Bilderkennung und Szenenanalyse, bei der Muster komplex und die Anzahl der Merkmale groß ist.

Das Zerlegen komplexer Muster in einfachere hierarchische Untermuster ist nützlich, um Straßen, Flüsse oder Personen in Bildern oder Syntax und Syntax in Texten zu identifizieren.

Erkennung neuronaler Muster

Es ist dank der Komplexität, die es bewältigen kann, mit Abstand die beliebteste Technik zur Erkennung von Mustern.

Künstliches neuronales Netzwerk ist ein Computersystem, das auf einer neuronalen Netzwerkarchitektur basiert, ähnlich der Art und Weise, wie das menschliche Gehirn komplexe Signale verarbeitet.

Es kann lernen, Muster in verschiedenen Datentypen zu erkennen und unbekannte Daten effizient zu verarbeiten.

Template Matching

Objekterkennung mittels Template Matching. Die Technologie ordnet die Eigenschaften eines Objekts einer vordefinierten Vorlage zu und identifiziert das Objekt über einen Agenten. Wird normalerweise bei der Computer-Vision-Objekterkennung in Bereichen wie Robotik, Fahrzeugverfolgung usw. verwendet, um kleine Teile eines Bildes zu finden, die einer Vorlage entsprechen.

Vorteile der Mustererkennung

1. Die Mustererkennung hilft bei der Lösung von Klassifizierungsszenarien wie biometrischen Erkennungsproblemen und der Klassifizierung von Knötchen in Tumor-/Nicht-Tumorzellen in der medizinischen Bildgebung.

2. Die Mustererkennung ist nützlich zur Objekterkennung, insbesondere zur Identifizierung entfernter und versteckter Objekte oder von Objekten, die in anderen Winkeln als den Eingabedaten sichtbar sind. KI-Modelle können subtile Beobachtungen machen und mehrere Muster in großen Datenmengen korrelieren, was eine der wertvollsten Anwendungen der Mustererkennung darstellt.

3. Die Mustererkennung ist gut darin, alle Merkmalsvektoren und Datenmuster zusammenzufassen, was es ihr ermöglicht, Aktienkurse vorherzusagen und genaue allgemeine Extrapolationsvorhersagen zu treffen.

Herausforderungen der Mustererkennung

1 Die Mustererkennung erfordert oft eine große Datenmenge. Mit anderen Worten: Um ein neuronales Netzwerk für die Musteranalyse zu trainieren, ist eine große Menge an Trainingsdaten erforderlich. Das Speichern solch großer Datenmengen kann die Anwendungsmöglichkeiten der Mustererkennung weiter einschränken.

2. Probleme mit der Datenqualität. Trainingsdaten für maschinelle Lernalgorithmen sollten aus zuverlässigen Quellen stammen. Es sollte frei von Verzerrungen und Rauschen sein, die die inhärenten Mustererkennungs- und Entscheidungsfähigkeiten neuronaler Netze behindern.

3. Die Trainingszeit ist lang. Die identifizierten Muster sind nicht nur schwer zu analysieren, sondern erfordern auch viel Zeit, um die Daten zu sammeln, die Daten vorzuverarbeiten und das Modell zu trainieren.

Anwendungsbeispiele der Mustererkennung

1. Börsenprognose

Die Vorhersage zukünftiger Aktienwerte ist eine der anspruchsvollsten Aufgaben. Zunächst wurden lineare und entscheidungsbasierte Machine-Learning-Modelle verwendet, inzwischen kommen aber auch Deep-Learning-Modelle zum Einsatz. Viele Händler verwenden Diagrammmuster in Kombination mit anderen Mustererkennungsalgorithmen, die Deep Learning und LSTM umfassen, um Handelsentscheidungen zu treffen und Börsenvorhersagen zu treffen.

2. Benutzerforschung

Mustererkennung als Möglichkeit zur Beschreibung von Daten durch Hervorhebung ihrer einzigartigen Eigenschaften, die selbst Muster sind. Es dient dazu, verfügbare Benutzerdaten zu analysieren und nach ausgewählten Merkmalen zu segmentieren.

3. Textmustererkennung

Mustererkennung ist eine Methode zur Identifizierung der Bausteine ​​eines Textes, wie Wörter, Grammatik und der Muster, denen sie folgen. Dies wird zur Grammatikprüfung, maschinellen Übersetzung, Inhaltsklassifizierung usw. verwendet.

4. Kundenfeedback

Das Mustererkennungssystem sucht nach nützlichen Informationen in Kundenfeedback und Produktbewertungen. Dazu gehören die verwendeten Schlüsselwörter, die Gefühle Ihrer Kunden und ihre Wünsche. Dies ist wichtig für Dinge wie Wettbewerbs- und Marktanalysen.

5. Optische Zeichenerkennung (OCR)

Die Technologie zur optischen Zeichenerkennung (OCR) wandelt gescannte Dokumente, Screenshots und andere digitale Bilder in bearbeitbare und durchsuchbare elektronische Dateien um. OCR macht eine manuelle Dateneingabe überflüssig, was Zeit spart und die Effizienz steigert. Um OCR durchzuführen, wird das digitale Bild zunächst segmentiert und verarbeitet, um optische Muster zu erkennen. Diese Muster werden dann in Buchstaben, Zahlen, Symbole usw. klassifiziert.

6. Chatbots

Jeder Chatbot nutzt maschinelle Lernalgorithmen, um Texte anhand inhärenter Satzmuster zu klassifizieren und entsprechende Antworten zu generieren. Der Administrator des Systems ist dafür verantwortlich, alle möglichen Muster einer Reihe möglicher Antworten zuzuordnen. Diese Technologie, deren Kern die Verarbeitung natürlicher Sprache ist, ist ein weiteres hervorragendes Beispiel für die Anwendung von Mustererkennung.

7. Bilderkennung

In Bildern kann die Mustererkennung verwendet werden, um Kanten, Linien und Formen zu finden. Geeignet für Bildverarbeitung, Computer Vision usw.

Das obige ist der detaillierte Inhalt vonEin tiefer Einblick in die Konzepte der Mustererkennung beim maschinellen Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Dieser Artikel ist reproduziert unter:网易伏羲. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen
Was ist Alteryx? | Analytics VidhyaWas ist Alteryx? | Analytics VidhyaApr 15, 2025 am 11:03 AM

Alteryx: Ihre All-in-One-Datenanalyselösung Stellen Sie sich vor, Sie befassen sich mit nur statistischen Daten als Hinweise auf ein komplexes Geheimnis. Datenfachleute stehen täglich ähnliche Herausforderungen. Alteryx ist die Lösung, die den Benutzern die Erreichung von Datenkomplexitäten mit OUS ermöglichen

LAMA 3.1 vs Lama 3: Was ist besser?LAMA 3.1 vs Lama 3: Was ist besser?Apr 15, 2025 am 10:53 AM

Metas Lama 3.1 70b und Lama 3 70b: ein detaillierter Vergleich Meta veröffentlichte kürzlich Lama 3.1, einschließlich des 70B -Parametermodells, neben größeren und kleineren Varianten. Dieses Upgrade folgt der Lama 3 -Veröffentlichung erst drei Monate zuvor. Während Lama 3.1

7 AI PPT -Hersteller, mit denen Sie kostenlos beginnen können!7 AI PPT -Hersteller, mit denen Sie kostenlos beginnen können!Apr 15, 2025 am 10:51 AM

Entfesseln Sie Ihre Präsentationskraft: 7 kostenlose KI-betriebene PowerPoint-Hersteller Egal, ob Sie ein Student im letzten Jahr sind, der ein herausragendes Capstone-Projekt oder ein geschäftiges professionelles Jonglier Meetings und Präsentationen erstellt, ist es von größter Bedeutung, einen starken ersten Eindruck zu hinterlassen.

Was sind Power BI -semantische Modelle?Was sind Power BI -semantische Modelle?Apr 15, 2025 am 10:46 AM

Einführung Stellen Sie sich ein Szenario vor: Ihr Team ist von einem massiven Datensatz aus verschiedenen Quellen überwältigt. Das Integrieren, Sortieren und Analysieren dieser Informationen für eine aussagekräftige Präsentation ist eine Herausforderung. Hier ist Power BI -semantische Modelle (PBISM) ex

So bauen Sie einen AI -Agenten mit Lama Index und Monsterapi aufSo bauen Sie einen AI -Agenten mit Lama Index und Monsterapi aufApr 15, 2025 am 10:44 AM

AI -Agenten: Die Zukunft der KI, angetrieben von Lamaindex und Monsterapi KI -Agenten sind bereit, zu revolutionieren, wie wir mit Technologie interagieren. Diese autonomen Systeme imitieren das menschliche Verhalten und führen Aufgaben aus, die Argumentation, Entscheidungsfindung und REA erfordern

7 Möglichkeiten, LLMs ohne menschliche Intervention zu trainieren7 Möglichkeiten, LLMs ohne menschliche Intervention zu trainierenApr 15, 2025 am 10:38 AM

Entsperren autonomer KI: 7 Methoden zur Selbsttraining-LLMs Stellen Sie sich eine Zukunft vor, in der KI -Systeme ohne menschliche Intervention lernen und weiterentwickeln, ähnlich wie Kinder, die komplexe Konzepte unabhängig voneinander beherrschen. Dies ist keine Science -Fiction; Es ist das Versprechen des Selbst

Transformation der Finanzberichterstattung mit AI und NLG - Analytics VidhyaTransformation der Finanzberichterstattung mit AI und NLG - Analytics VidhyaApr 15, 2025 am 10:35 AM

KI-betriebene Finanzberichterstattung: Erkenntnisse durch natürliche Sprachgenerierung revolutionieren In der heutigen dynamischen Geschäftsumgebung ist eine genaue und zeitnahe Finanzanalyse für strategische Entscheidungen von größter Bedeutung. Traditionelle Finanzberichterstattung

Wird dieser Google DeepMind -Roboter bei den Olympischen Spielen 2028 spielen?Wird dieser Google DeepMind -Roboter bei den Olympischen Spielen 2028 spielen?Apr 15, 2025 am 10:16 AM

Google DeepMinds Tischtennisroboter: Eine neue Ära in Sport und Robotik Die Olympischen Spiele in Paris 2024 mögen vorbei sein, aber dank Google DeepMind ist eine neue Ära in Sport und Robotik geweckt. Ihre bahnbrechende Forschung ("Kompetenz auf Menschenebene erreichen

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software