suchen
HeimTechnologie-PeripheriegeräteKIAnwendung von Empfehlungsalgorithmen beim maschinellen Lernen

Anwendung von Empfehlungsalgorithmen beim maschinellen Lernen

Empfehlungsalgorithmen werden häufig in der E-Commerce- und Kurzvideobranche eingesetzt. Sie analysieren die Vorlieben und Interessen der Benutzer, filtern und verarbeiten umfangreiche Daten und stellen den Benutzern die relevantesten Informationen zur Verfügung. Dieser Algorithmus kann interessante Inhalte basierend auf den persönlichen Bedürfnissen des Benutzers genau empfehlen.

Der Empfehlungsalgorithmus ist eine Methode, mit der die Kompatibilität von Benutzern und Objekten sowie die Ähnlichkeit zwischen Benutzern und Elementen ermittelt wird, um Empfehlungen abzugeben. Dieser Algorithmus ist sowohl für die Benutzer als auch für die bereitgestellten Dienste sehr hilfreich. Mit diesen Lösungen können wir Qualität und Entscheidungsprozesse verbessern. Darüber hinaus können solche Algorithmen in großem Umfang verwendet werden, um eine Vielzahl von Artikeln zu empfehlen, darunter Filme, Bücher, Nachrichten, Artikel, Jobs und Werbung.

Empfehlungsalgorithmen werden hauptsächlich in drei Typen unterteilt:

  1. Inhaltsbasierte Filterung
  2. Kollaborative Filterung
  3. Hybrides Empfehlungssystem

Inhaltsbasierte Filterung

Diese Form des Empfehlungsalgorithmus basiert auf den Elementen, über die der Benutzer verfügt Der zuvor gesuchte Inhalt zeigt verwandte Elemente an. Die Attribute/Tags des Produkts, die dem Benutzer gefallen, werden in diesem Fall als Inhalt bezeichnet. Bei dieser Art von System werden Artikel mit Schlüsselwörtern versehen und das System durchsucht die Datenbank, um die Benutzerbedürfnisse zu verstehen, und empfiehlt schließlich verschiedene Produkte, die der Benutzer haben möchte.

Nehmen Sie als Beispiel den Filmempfehlungsalgorithmus. Jedem Film wird ein Genre zugewiesen, das auch als Tag oder Attribut bezeichnet wird. Gehen Sie davon aus, dass das System beim ersten Zugriff eines Benutzers auf das System keine Informationen über den Benutzer hat. Daher versucht das System zunächst, dem Benutzer beliebte Filme zu empfehlen oder Benutzerinformationen zu sammeln, indem es den Benutzer zum Ausfüllen eines Formulars auffordert. Im Laufe der Zeit können Benutzer bestimmte Filme bewerten, indem sie beispielsweise Actionfilmen eine gute Bewertung und Anime-Filmen eine niedrige Bewertung geben. Das Ergebnis ist, dass der Empfehlungsalgorithmus den Benutzern mehr Actionfilme empfiehlt.

Vorteile der inhaltsbasierten Filterung

  • Da Empfehlungen auf einen einzelnen Benutzer zugeschnitten sind, benötigt das Modell keine Daten von anderen Benutzern.
  • Erleichtern Sie die Skalierung.
  • Das Modell kann die persönlichen Interessen des Benutzers erkennen und Artikel empfehlen, an denen nur wenige andere Benutzer interessiert sind.

Nachteile der inhaltsbasierten Filterung

  • Da die Feature-Darstellung des Projekts von Hand entworfen wird, erfordert diese Technik viel Domänenwissen.
  • Das Modell kann nur Empfehlungen aussprechen, die auf den bisherigen Interessen des Benutzers basieren.

Kollaboratives Filtern

Kooperationsbasiertes Filtern ist eine Methode, Verbrauchern neue Artikel basierend auf den Interessen und Vorlieben anderer ähnlicher Benutzer zu empfehlen. Beispielsweise kann das System beim Online-Einkauf neue Produkte empfehlen, basierend auf Informationen wie „Kunden, die dies gekauft haben, haben es auch gekauft.“ Dieser Ansatz ist der inhaltsbasierten Filterung überlegen, da er nicht auf der Interaktion des Benutzers mit Inhalten beruht, sondern Empfehlungen basierend auf dem historischen Verhalten des Benutzers abgibt. Durch die Analyse vergangener Daten können wir davon ausgehen, dass Nutzer in Zukunft an ähnlichen Artikeln interessiert sein werden. Dieser Ansatz vermeidet die Einschränkungen der inhaltsbasierten Filterung und liefert genauere Empfehlungen.

Die kollaborative Filterung kann in zwei Kategorien unterteilt werden:

Bei der benutzerbasierten kollaborativen Filterung identifiziert das System Benutzer mit ähnlichen Kaufpräferenzen und berechnet die Ähnlichkeit anhand ihres Kaufverhaltens.

Der artikelbasierte kollaborative Filteralgorithmus sucht nach anderen Artikeln, die dem Artikel ähneln, den der Verbraucher gekauft hat, und die Ähnlichkeit wird auf der Grundlage von Artikeln und nicht von Benutzern berechnet.

Vorteile der kollaborativen Filterung

  • Es funktioniert gut, auch wenn die Datenmenge klein ist.
  • Dieses Modell hilft Benutzern dabei, neues Interesse an einem bestimmten Artikel zu entdecken. Wenn andere Benutzer jedoch das gleiche Interesse haben, kann das Modell ihn dennoch empfehlen.
  • Keine Domänenkenntnisse erforderlich.

Nachteile der kollaborativen Filterung

  • Es kann keine neuen Dinge verarbeiten, da das Modell nicht auf neu hinzugefügte Objekte zur Datenbank trainiert wird.
  • Die Bedeutung sekundärer Funktionen wird ignoriert.

Hybrider Empfehlungsalgorithmus

Verschiedene Arten von Empfehlungsalgorithmen haben ihre eigenen Vor- und Nachteile, sind jedoch bei alleiniger Verwendung begrenzt, insbesondere wenn mehrere Datenquellen für dasselbe Problem verwendet werden.

Parallel und sequentiell sind die gängigsten Entwurfsmethoden hybrider Empfehlungssysteme. In einer parallelen Architektur stellen mehrere Empfehlungsalgorithmen gleichzeitig Eingaben bereit und kombinieren ihre Ausgabeergebnisse, um ein einziges Empfehlungsergebnis zu erhalten. Die sequentielle Architektur übergibt Eingabeparameter an eine Empfehlungsmaschine, die Empfehlungsergebnisse generiert und diese dann an den nächsten Empfehlungsgeber in der Reihe weitergibt. Dieser Designansatz kann die Genauigkeit und Effizienz des Empfehlungssystems verbessern.

Vorteile hybrider Empfehlungssysteme

Hybridsysteme integrieren mehrere Modelle, um die Mängel eines Modells zu überwinden. Insgesamt werden dadurch die Nachteile der Verwendung eines einzelnen Modells gemildert und zuverlässigere Empfehlungen generiert. Dadurch erhalten Benutzer aussagekräftigere und maßgeschneiderte Empfehlungen.

Nachteile hybrider Empfehlungssysteme

Diese Modelle sind oft rechenintensiv und erfordern eine große Datenbank mit Bewertungen und anderen Kriterien, um auf dem neuesten Stand zu bleiben. Ohne aktuelle Metriken ist es schwierig, sich neu zu schulen und neue Empfehlungen mit aktualisierten Artikeln und Bewertungen verschiedener Benutzer bereitzustellen.

Alles in allem erleichtert der Empfehlungsalgorithmus den Benutzern die Auswahl ihrer bevorzugten Optionen und Interessengebiete, abgestimmt auf ihre Vorlieben. Derzeit werden Empfehlungsalgorithmen in vielen gängigen Anwendungen verwendet.

Das obige ist der detaillierte Inhalt vonAnwendung von Empfehlungsalgorithmen beim maschinellen Lernen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Dieser Artikel ist reproduziert unter:网易伏羲. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen
Die KI -Kompetenzlücke verlangsamt die VersorgungskettenDie KI -Kompetenzlücke verlangsamt die VersorgungskettenApr 26, 2025 am 11:13 AM

Der Begriff "AI-fähige Belegschaft" wird häufig verwendet, aber was bedeutet das in der Lieferkettenindustrie wirklich? Nach Abe Eshkenazi, CEO des Association for Supply Chain Management (ASCM), bedeutet dies Fachkräfte, die kritisch sind

Wie ein Unternehmen leise daran arbeitet, die KI für immer zu verwandelnWie ein Unternehmen leise daran arbeitet, die KI für immer zu verwandelnApr 26, 2025 am 11:12 AM

Die dezentrale KI -Revolution gewinnt leise an Dynamik. An diesem Freitag in Austin, Texas, markiert der Bittensor Endgame Summit einen entscheidenden Moment, in dem die dezentrale KI (DEAI) von Theorie zu praktischer Anwendung übergeht. Im Gegensatz zum glitzernden Werbespot

Nvidia veröffentlicht Nemo Microservices, um die Entwicklung der AI -Agenten zu optimierenNvidia veröffentlicht Nemo Microservices, um die Entwicklung der AI -Agenten zu optimierenApr 26, 2025 am 11:11 AM

Enterprise KI steht vor der Datenintegrationsprobleme Die Anwendung von Enterprise KI steht vor einer großen Herausforderung: Aufbau von Systemen, die die Genauigkeit und Praktikabilität durch kontinuierlich lernende Geschäftsdaten aufrechterhalten können. NEMO Microservices lösen dieses Problem, indem er das erstellt, was NVIDIA als "Datenschwungrad" beschreibt und KI -Systemen durch kontinuierliche Exposition gegenüber Unternehmensinformationen und Benutzerinteraktion relevant bleibt. Dieses neu gestartete Toolkit enthält fünf wichtige Microservices: Nemo Customizer behandelt die Feinabstimmung großer Sprachmodelle mit höherem Trainingsdurchsatz. NEMO Evaluator bietet eine vereinfachte Bewertung von KI -Modellen für benutzerdefinierte Benchmarks. NEMO -Leitplanken implementiert Sicherheitskontrollen, um die Einhaltung und Angemessenheit aufrechtzuerhalten

KI malt ein neues Bild für die Zukunft von Kunst und DesignKI malt ein neues Bild für die Zukunft von Kunst und DesignApr 26, 2025 am 11:10 AM

AI: Die Zukunft von Kunst und Design Künstliche Intelligenz (KI) verändert das Kunst- und Designgebiet auf beispiellose Weise, und seine Auswirkungen beschränken sich nicht mehr auf Amateure, sondern beeinflussen jedoch die Fachkräfte. Kunstwerke und Designschemata, die von KI erzeugt wurden, ersetzen traditionelle materielle Bilder und Designer in vielen Transaktionsdesignaktivitäten wie Werbung, Social -Media -Bildgenerierung und Webdesign schnell. Professionelle Künstler und Designer finden jedoch auch den praktischen Wert von KI. Sie verwenden AI als Hilfsmittel, um neue ästhetische Möglichkeiten zu erforschen, verschiedene Stile zu mischen und neuartige visuelle Effekte zu erzeugen. KI hilft Künstlern und Designer, sich wiederholende Aufgaben zu automatisieren, verschiedene Designelemente vorzuschlagen und kreative Eingaben zu leisten. AI unterstützt den Stiltransfer, der einen Bildstil anwenden soll

Wie Zoom die Arbeit mit Agentic AI: Von Meetings bis Meilensteinen revolutioniertWie Zoom die Arbeit mit Agentic AI: Von Meetings bis Meilensteinen revolutioniertApr 26, 2025 am 11:09 AM

Zoom, ursprünglich für seine Video -Konferenz -Plattform bekannt, führt eine Revolution am Arbeitsplatz mit der innovativen Nutzung der Agenten -KI. Ein aktuelles Gespräch mit Zooms CTO, XD Huang, enthüllte die ehrgeizige Vision des Unternehmens. Definieren von Agenten AI Huang d

Die existenzielle Bedrohung für UniversitätenDie existenzielle Bedrohung für UniversitätenApr 26, 2025 am 11:08 AM

Wird AI die Bildung revolutionieren? Diese Frage führt zu ernsthafter Reflexion unter Pädagogen und Stakeholdern. Die Integration von KI in Bildung bietet sowohl Chancen als auch Herausforderungen. Wie Matthew Lynch von The Tech Edvocate bemerkt, Universität

Der Prototyp: Amerikanische Wissenschaftler suchen nach Jobs im AuslandDer Prototyp: Amerikanische Wissenschaftler suchen nach Jobs im AuslandApr 26, 2025 am 11:07 AM

Die Entwicklung wissenschaftlicher Forschung und Technologie in den Vereinigten Staaten kann vor Herausforderungen stehen, möglicherweise aufgrund von Budgetkürzungen. Nach der Natur stieg die Zahl der amerikanischen Wissenschaftler, die sich für Arbeitsplätze in Übersee bewerben, von Januar bis März 2025 im Vergleich zum gleichen Zeitraum von 2024 um 32%. Eine frühere Umfrage ergab, dass 75% der untersuchten Forscher über die Suche nach Arbeitsplätzen in Europa und Kanada in Betracht gezogen wurden. In den letzten Monaten wurden Hunderte von NIH- und NSF-Zuschüssen beendet, wobei die neuen Zuschüsse von NIH in diesem Jahr um etwa 2,3 Milliarden US-Dollar gesunken sind, ein Rückgang von fast einem Drittel. Der durchgesickerte Haushaltsvorschlag zeigt, dass die Trump -Administration mit einer möglichen Reduzierung von um bis zu 50%ein starkes Budget für wissenschaftliche Institutionen in Betracht zieht. Die Turbulenzen auf dem Gebiet der Grundlagenforschung haben sich auch auf einen der Hauptvorteile der Vereinigten Staaten ausgewirkt: die Gewinnung von Talenten in Übersee. 35

Alles über Open AIs neueste GPT 4.1 -Familie - Analytics VidhyaAlles über Open AIs neueste GPT 4.1 -Familie - Analytics VidhyaApr 26, 2025 am 10:19 AM

OpenAI enthüllt die leistungsstarke GPT-4.1-Serie: eine Familie von drei fortschrittlichen Sprachmodellen für reale Anwendungen. Dieser signifikante Sprung nach vorne bietet schnellere Reaktionszeiten, verbessertes Verständnis und drastisch reduzierte Kosten im Vergleich t t

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.