suchen
HeimTechnologie-PeripheriegeräteKIEin Leitfaden zur Anwendung von Boltzmann-Maschinen bei der Merkmalsextraktion

Ein Leitfaden zur Anwendung von Boltzmann-Maschinen bei der Merkmalsextraktion

Boltzmann Machine (BM) ist ein wahrscheinlichkeitsbasiertes neuronales Netzwerk, das aus mehreren Neuronen mit zufälligen Verbindungsbeziehungen zwischen den Neuronen besteht. Die Hauptaufgabe von BM besteht darin, Merkmale durch Erlernen der Wahrscheinlichkeitsverteilung von Daten zu extrahieren. In diesem Artikel wird die Anwendung von BM zur Merkmalsextraktion vorgestellt und einige praktische Anwendungsbeispiele bereitgestellt.

1. Die Grundstruktur von BM

BM besteht aus sichtbaren Schichten und verborgenen Schichten. Die sichtbare Schicht empfängt Rohdaten und die verborgene Schicht erhält durch Lernen einen Merkmalsausdruck auf hoher Ebene.

In BM hat jedes Neuron zwei Zustände, 0 bzw. 1. Der Lernprozess von BM kann in eine Trainingsphase und eine Testphase unterteilt werden. In der Trainingsphase lernt BM die Wahrscheinlichkeitsverteilung der Daten, um in der Testphase neue Datenproben zu generieren. Während der Testphase kann BM auf Aufgaben wie Merkmalsextraktion und -klassifizierung angewendet werden.

2. BM-Trainingsprozess

BM-Training verwendet normalerweise den Back-Propagation-Algorithmus. Dieser Algorithmus berechnet die Gradienten aller Gewichte im Netzwerk und verwendet diese Gradienten, um die Gewichte zu aktualisieren. Der Trainingsprozess von BM umfasst die folgenden Schritte: Zunächst werden die Eingabedaten durch Vorwärtsausbreitung von der Eingabeschicht an die Ausgabeschicht weitergeleitet und die Ausgabe des Netzwerks berechnet. Anschließend wird durch Vergleich der Ausgabe mit der erwarteten Ausgabe der Fehler des Netzwerks berechnet. Als nächstes wird der Backpropagation-Algorithmus verwendet, ausgehend von der Ausgabeschicht wird der Gradient jedes Gewichts Schicht für Schicht berechnet und die Gewichte werden mithilfe der Gradientenabstiegsmethode aktualisiert. Dieser Vorgang wird mehrmals wiederholt, bis der Fehler des Netzwerks einen akzeptablen Bereich erreicht.

1. Initialisieren Sie die Gewichtsmatrix und den Bias-Vektor von BM.

2. Geben Sie die Datenproben in die sichtbare Ebene von BM ein.

3. Berechnen Sie den Zustand von Neuronen der verborgenen Schicht mithilfe der Zufallsaktivierungsfunktion von BM (z. B. Sigmoidfunktion).

4. Berechnen Sie die gemeinsame Wahrscheinlichkeitsverteilung der sichtbaren Schicht und der verborgenen Schicht basierend auf dem Zustand der Neuronen der verborgenen Schicht.

5. Verwenden Sie den Backpropagation-Algorithmus, um den Gradienten der Gewichtsmatrix und des Bias-Vektors zu berechnen und ihre Werte zu aktualisieren.

6. Wiederholen Sie die Schritte 2-5, bis die Gewichtsmatrix und der Bias-Vektor von BM konvergieren.

Während des Trainingsprozesses von BM können verschiedene Optimierungsalgorithmen verwendet werden, um die Gewichtsmatrix und den Bias-Vektor zu aktualisieren. Zu den häufig verwendeten Optimierungsalgorithmen gehören stochastischer Gradientenabstieg (SGD), Adam, Adagrad usw.

3. Anwendung von BM bei der Merkmalsextraktion

BM kann für Merkmalsextraktionsaufgaben verwendet werden. Die Grundidee besteht darin, die Merkmalsdarstellung der Daten auf hoher Ebene zu extrahieren, indem die Wahrscheinlichkeitsverteilung der Daten gelernt wird. Insbesondere können die Neuronen der verborgenen Schicht von BM als Merkmalsextraktoren verwendet werden, und die Zustände dieser Neuronen können als Merkmalsdarstellungen der Daten auf hoher Ebene verwendet werden.

Bei Bilderkennungsaufgaben kann BM beispielsweise verwendet werden, um hochrangige Merkmalsdarstellungen von Bildern zu extrahieren. Zunächst werden die Originalbilddaten in die sichtbare BM-Schicht eingegeben. Anschließend wird durch den BM-Trainingsprozess die Wahrscheinlichkeitsverteilung der Bilddaten gelernt. Schließlich wird der Zustand der Neuronen der verborgenen Schicht von BM als übergeordnete Merkmalsdarstellung des Bildes für nachfolgende Klassifizierungsaufgaben verwendet.

Ähnlich kann BM bei Aufgaben zur Verarbeitung natürlicher Sprache verwendet werden, um Merkmalsdarstellungen von Text auf hoher Ebene zu extrahieren. Zunächst werden Rohtextdaten in die sichtbare BM-Ebene eingegeben. Anschließend wird durch den BM-Trainingsprozess die Wahrscheinlichkeitsverteilung von Textdaten gelernt. Schließlich wird der Zustand der Neuronen der verborgenen Schicht von BM als übergeordnete Merkmalsdarstellung des Textes für nachfolgende Klassifizierung, Clustering und andere Aufgaben verwendet.

Vor- und Nachteile von BM

Als wahrscheinlichkeitsbasiertes neuronales Netzwerkmodell hat BM die folgenden Vorteile:

1. Es kann die Wahrscheinlichkeitsverteilung von Daten lernen, um daraus eine Merkmalsdarstellung auf hoher Ebene zu extrahieren die Daten.

2. Es kann zum Generieren neuer Datenproben verwendet werden und verfügt über bestimmte Generierungsfunktionen.

3. Kann mit unvollständigen oder verrauschten Daten umgehen und verfügt über eine gewisse Robustheit.

Allerdings weist BM auch einige Mängel auf:

1 Der Trainingsprozess ist relativ komplex und erfordert den Einsatz von Optimierungsalgorithmen wie Backpropagation-Algorithmen für das Training.

2. Das Training dauert lange und erfordert viel Rechenressourcen und Zeit.

3. Die Anzahl der verborgenen Schichtneuronen muss im Voraus bestimmt werden, was der Erweiterung und Anwendung des Modells nicht förderlich ist.

Das obige ist der detaillierte Inhalt vonEin Leitfaden zur Anwendung von Boltzmann-Maschinen bei der Merkmalsextraktion. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Dieser Artikel ist reproduziert unter:网易伏羲. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen
Kochen innovation: Wie künstliche Intelligenz den Lebensmittelservice verändertKochen innovation: Wie künstliche Intelligenz den Lebensmittelservice verändertApr 12, 2025 pm 12:09 PM

KI verstärken die Zubereitung der Lebensmittel KI -Systeme werden während der Nahten immer noch in der Zubereitung von Nahrungsmitteln eingesetzt. KI-gesteuerte Roboter werden in Küchen verwendet, um Aufgaben zur Zubereitung von Lebensmitteln zu automatisieren, z.

Umfassende Anleitung zu Python -Namespaces und variablen ScopesUmfassende Anleitung zu Python -Namespaces und variablen ScopesApr 12, 2025 pm 12:00 PM

Einführung Das Verständnis der Namespaces, Scopes und des Verhaltens von Variablen in Python -Funktionen ist entscheidend, um effizient zu schreiben und Laufzeitfehler oder Ausnahmen zu vermeiden. In diesem Artikel werden wir uns mit verschiedenen ASP befassen

Ein umfassender Leitfaden zu Vision Language Models (VLMs)Ein umfassender Leitfaden zu Vision Language Models (VLMs)Apr 12, 2025 am 11:58 AM

Einführung Stellen Sie sich vor, Sie gehen durch eine Kunstgalerie, umgeben von lebhaften Gemälden und Skulpturen. Was wäre, wenn Sie jedem Stück eine Frage stellen und eine sinnvolle Antwort erhalten könnten? Sie könnten fragen: „Welche Geschichte erzählst du?

MediaTek steigert die Premium -Aufstellung mit Kompanio Ultra und Abmessung 9400MediaTek steigert die Premium -Aufstellung mit Kompanio Ultra und Abmessung 9400Apr 12, 2025 am 11:52 AM

In diesem Monat hat MediaTek in diesem Monat eine Reihe von Ankündigungen gemacht, darunter das neue Kompanio Ultra und die Abmessung 9400. Diese Produkte füllen die traditionelleren Teile von MediaTeks Geschäft aus, die Chips für Smartphone enthalten

Diese Woche in AI: Walmart setzt Modetrends vor, bevor sie jemals passierenDiese Woche in AI: Walmart setzt Modetrends vor, bevor sie jemals passierenApr 12, 2025 am 11:51 AM

#1 Google gestartet Agent2Agent Die Geschichte: Es ist Montagmorgen. Als mit KI betriebener Personalvermittler arbeiten Sie intelligenter, nicht härter. Sie melden sich im Dashboard Ihres Unternehmens auf Ihrem Telefon an. Es sagt Ihnen, dass drei kritische Rollen bezogen, überprüft und geplant wurden

Generative KI trifft PsychobabbleGenerative KI trifft PsychobabbleApr 12, 2025 am 11:50 AM

Ich würde vermuten, dass du es sein musst. Wir alle scheinen zu wissen, dass Psychobabble aus verschiedenen Geschwätzern besteht, die verschiedene psychologische Terminologie mischen und oft entweder unverständlich oder völlig unsinnig sind. Alles was Sie tun müssen, um fo zu spucken

Der Prototyp: Wissenschaftler verwandeln Papier in PlastikDer Prototyp: Wissenschaftler verwandeln Papier in PlastikApr 12, 2025 am 11:49 AM

Laut einer neuen Studie, die diese Woche veröffentlicht wurde, wurden im Jahr 2022 nur 9,5% der im Jahr 2022 hergestellten Kunststoffe aus recycelten Materialien hergestellt. In der Zwischenzeit häufen sich Plastik weiter in Deponien - und Ökosystemen - um die Welt. Aber Hilfe ist unterwegs. Ein Team von Engin

Der Aufstieg des KI -Analysten: Warum dies der wichtigste Job in der KI -Revolution sein könnteDer Aufstieg des KI -Analysten: Warum dies der wichtigste Job in der KI -Revolution sein könnteApr 12, 2025 am 11:41 AM

Mein jüngstes Gespräch mit Andy Macmillan, CEO der führenden Unternehmensanalyse -Plattform Alteryx, zeigte diese kritische, aber unterschätzte Rolle in der KI -Revolution. Wie Macmillan erklärt, die Lücke zwischen Rohgeschäftsdaten und KI-fertigen Informat

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor