有这样的一个需求:select count(distinct nick) from user_access_xx_xx;
这条sql用于统计用户访问的uv,由于单表的数据量在10G以上,即使在user_access_xx_xx上加上nick的索引,
通过查看执行计划,也为全索引扫描,sql在执行的时候,会对整个服务器带来抖动;
root@db 09:00:12>select count(distinct nick) from user_access; +———————-+ | count(distinct nick) | +———————-+ | 806934 | +———————-+ 1 row in set (52.78 sec)
执行一次sql需要花费52.78s,已经非常的慢了
现在需要换一种思路来解决该问题:
我们知道索引的值是按照索引字段升序的,比如我们对(nick,other_column)两个字段做了索引,那么在索引中的则是按照nick,other_column的升序排列:
我们现在的sql:select count(distinct nick) from user_access;则是直接从nick1开始一条条扫描下来,直到扫描到最后一个nick_n,
那么中间过程会扫描很多重复的nick,如果我们能够跳过中间重复的nick,则性能会优化非常多(在oracle中,这种扫描技术为loose index scan,但在5.1的版本中,mysql中还不能直接支持这种优化技术):
所以需要通过改写sql来达到伪loose index scan:
root@db 09:41:30>select count(*) from ( select distinct(nick) from user_access)t ; | count(*) | +———-+ | 806934 | 1 row in set (5.81 sec)
Sql中先选出不同的nick,最后在外面套一层,就可以得到nick的distinct值总和;
最重要的是在子查询中:select distinct(nick) 实现了上图中的伪loose index scan,优化器在这个时候的执行计划为Using index for group-by ,
需要注意的是mysql把distinct优化为group by,它首先利用索引来分组,然后扫描索引,对需要的nick只扫描一次;
两个sql的执行计划分别为:
优化写法:
root@db 09:41:10>explain select distinct(nick) from user_access-> ; +—-+————-+——————————+——-+—————+————-| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——————————+——-+—————+————- | 1 | SIMPLE | user_access | range | NULL | ind_user_access_nick | 67 | NULL | 2124695 | Using index for group-by | +—-+————-+——————————+——-+—————+————-
原始写法:
root@db 09:42:55>explain select count(distinct nick) from user_access; +—-+————-+——————————+——-+—————+————- | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——————————+——-+—————+————- | 1 | SIMPLE | user_access | index | NULL | ind_user_access | 177 | NULL | 19546123 | Using index |

Die MySQL -Idium -Kardinalität hat einen signifikanten Einfluss auf die Abfrageleistung: 1. Hoher Kardinalitätsindex kann den Datenbereich effektiver einschränken und die Effizienz der Abfrage verbessern. 2. Niedriger Kardinalitätsindex kann zu einem vollständigen Tischscannen führen und die Abfrageleistung verringern. 3. Im gemeinsamen Index sollten hohe Kardinalitätssequenzen vorne platziert werden, um die Abfrage zu optimieren.

Der MySQL -Lernpfad umfasst Grundkenntnisse, Kernkonzepte, Verwendungsbeispiele und Optimierungstechniken. 1) Verstehen Sie grundlegende Konzepte wie Tabellen, Zeilen, Spalten und SQL -Abfragen. 2) Lernen Sie die Definition, die Arbeitsprinzipien und die Vorteile von MySQL kennen. 3) Master grundlegende CRUD -Operationen und fortgeschrittene Nutzung wie Indizes und gespeicherte Verfahren. 4) KON -Debugging- und Leistungsoptimierungsvorschläge, wie z. B. rationale Verwendung von Indizes und Optimierungsabfragen. In diesen Schritten haben Sie einen vollen Verständnis für die Verwendung und Optimierung von MySQL.

Die realen Anwendungen von MySQL umfassen grundlegende Datenbankdesign und komplexe Abfrageoptimierung. 1) Grundnutzung: Wird zum Speichern und Verwalten von Benutzerdaten verwendet, z. B. das Einfügen, Abfragen, Aktualisieren und Löschen von Benutzerinformationen. 2) Fortgeschrittene Nutzung: Verwandte komplexe Geschäftslogik wie Auftrags- und Bestandsverwaltung von E-Commerce-Plattformen. 3) Leistungsoptimierung: Verbesserung der Leistung durch rationale Verwendung von Indizes, Partitionstabellen und Abfrage -Caches.

SQL -Befehle in MySQL können in Kategorien wie DDL, DML, DQL und DCL unterteilt werden und werden verwendet, um Datenbanken und Tabellen zu erstellen, zu ändern, zu löschen, Daten einfügen, aktualisieren, Daten löschen und komplexe Abfragebetriebe durchführen. 1. Die grundlegende Verwendung umfasst die Erstellungstabelle erstellbar, InsertInto -Daten einfügen und Abfragedaten auswählen. 2. Die erweiterte Verwendung umfasst die Zusammenarbeit mit Tabellenverbindungen, Unterabfragen und GroupBy für die Datenaggregation. 3.. Häufige Fehler wie Syntaxfehler, Datentyp -Nichtübereinstimmung und Berechtigungsprobleme können durch Syntaxprüfung, Datentypkonvertierung und Berechtigungsmanagement debuggen. 4. Vorschläge zur Leistungsoptimierung umfassen die Verwendung von Indizes, die Vermeidung vollständiger Tabellenscanning, Optimierung von Join -Operationen und Verwendung von Transaktionen, um die Datenkonsistenz sicherzustellen.

InnoDB erreicht Atomizität durch Ungewöhnung, Konsistenz und Isolation durch Verriegelungsmechanismus und MVCC sowie Persistenz durch Redolog. 1) Atomizität: Verwenden Sie Unolog, um die Originaldaten aufzuzeichnen, um sicherzustellen, dass die Transaktion zurückgerollt werden kann. 2) Konsistenz: Stellen Sie die Datenkonsistenz durch Verriegelung auf Zeilenebene und MVCC sicher. 3) Isolierung: Unterstützt mehrere Isolationsniveaus und wird standardmäßig WiederholungSead verwendet. 4) Persistenz: Verwenden Sie Redolog, um Modifikationen aufzuzeichnen, um sicherzustellen, dass die Daten für lange Zeit gespeichert werden.

Die Position von MySQL in Datenbanken und Programmierung ist sehr wichtig. Es handelt sich um ein Open -Source -Verwaltungssystem für relationale Datenbankverwaltung, das in verschiedenen Anwendungsszenarien häufig verwendet wird. 1) MySQL bietet effiziente Datenspeicher-, Organisations- und Abruffunktionen und unterstützt Systeme für Web-, Mobil- und Unternehmensebene. 2) Es verwendet eine Client-Server-Architektur, unterstützt mehrere Speichermotoren und Indexoptimierung. 3) Zu den grundlegenden Verwendungen gehören das Erstellen von Tabellen und das Einfügen von Daten, und erweiterte Verwendungen beinhalten Multi-Table-Verknüpfungen und komplexe Abfragen. 4) Häufig gestellte Fragen wie SQL -Syntaxfehler und Leistungsprobleme können durch den Befehl erklären und langsam abfragen. 5) Die Leistungsoptimierungsmethoden umfassen die rationale Verwendung von Indizes, eine optimierte Abfrage und die Verwendung von Caches. Zu den Best Practices gehört die Verwendung von Transaktionen und vorbereiteten Staten

MySQL ist für kleine und große Unternehmen geeignet. 1) Kleinunternehmen können MySQL für das grundlegende Datenmanagement verwenden, z. B. das Speichern von Kundeninformationen. 2) Große Unternehmen können MySQL verwenden, um massive Daten und komplexe Geschäftslogik zu verarbeiten, um die Abfrageleistung und die Transaktionsverarbeitung zu optimieren.

InnoDB verhindert effektiv das Phantom-Lesen durch den Mechanismus für den nächsten Kleien. 1) Nächstschlüsselmesser kombiniert Zeilensperr- und Gap-Sperre, um Datensätze und deren Lücken zu sperren, um zu verhindern, dass neue Datensätze eingefügt werden. 2) In praktischen Anwendungen kann durch Optimierung der Abfragen und Anpassung der Isolationsstufen die Verringerungswettbewerb reduziert und die Gleichzeitleistung verbessert werden.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Dreamweaver CS6
Visuelle Webentwicklungstools

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.