Zeitreihenbasierte Anomalieerkennungsprobleme erfordern spezifische Codebeispiele
Zeitreihendaten sind Daten, die in einer bestimmten Reihenfolge über die Zeit aufgezeichnet werden, z. B. Aktienkurse, Temperaturänderungen, Verkehrsfluss usw. In praktischen Anwendungen ist die Anomalieerkennung von Zeitreihendaten von großer Bedeutung. Ein Ausreißer kann ein Extremwert sein, der nicht mit normalen Daten übereinstimmt, Rauschen, fehlerhafte Daten oder ein unerwartetes Ereignis in einer bestimmten Situation. Die Anomalieerkennung kann uns helfen, diese Anomalien zu entdecken und geeignete Maßnahmen zu ergreifen.
Es gibt viele häufig verwendete Methoden für Anomalieerkennungsprobleme in Zeitreihen, darunter statistische Methoden, Methoden des maschinellen Lernens und Methoden des tiefen Lernens. In diesem Artikel werden zwei Algorithmen zur Erkennung von Zeitreihenanomalien vorgestellt, die auf statistischen Methoden und Methoden des maschinellen Lernens basieren, und entsprechende Codebeispiele bereitgestellt.
1. Algorithmus zur Anomalieerkennung basierend auf statistischen Methoden
1.1 Mittelwert-Varianz-Methode
Die Mittelwert-Varianz-Methode ist eine der einfachsten Methoden zur Anomalieerkennung. Die Grundidee besteht darin, anhand des Mittelwerts und der Varianz von Zeitreihendaten zu bestimmen, ob Anomalien vorliegen. Wenn die Abweichung eines Datenpunkts vom Mittelwert einen bestimmten Schwellenwert überschreitet (z. B. das Dreifache der Standardabweichung), wird dies als Anomalie beurteilt.
Das Folgende ist ein Codebeispiel, das Python verwendet, um die Mittelwert-Varianz-Methode zur Erkennung von Zeitreihenanomalien zu implementieren:
import numpy as np def detect_outliers_mean_std(data, threshold=3): mean = np.mean(data) std = np.std(data) outliers = [] for i in range(len(data)): if abs(data[i] - mean) > threshold * std: outliers.append(i) return outliers # 示例数据 data = [1, 2, 3, 4, 5, 20, 6, 7, 8, 9] # 检测异常值 outliers = detect_outliers_mean_std(data) print("异常数据索引:", outliers)
Laufende Ergebnisse:
Abnormaler Datenindex: [5]
1.2 Box-Plot-Methode
Der Box-Plot Die Methode ist eine weitere häufig verwendete Methode zur Anomalieerkennung. Es ermittelt Ausreißer anhand der Quartile der Daten (oberes und unteres Quartil, Median). Basierend auf dem Median (Q2) und den oberen und unteren Quartilen (Q1, Q3) können die oberen und unteren Grenzen berechnet werden. Wenn der Datenpunkt diese Grenze überschreitet, wird er als Anomalie beurteilt.
Das Folgende ist ein Codebeispiel für die Verwendung von Python zur Implementierung der Boxplot-Methode zur Erkennung von Zeitreihenanomalien:
import numpy as np import seaborn as sns def detect_outliers_boxplot(data): q1 = np.percentile(data, 25) q3 = np.percentile(data, 75) iqr = q3 - q1 outliers = [] for i in range(len(data)): if data[i] < q1 - 1.5 * iqr or data[i] > q3 + 1.5 * iqr: outliers.append(i) return outliers # 示例数据 data = [1, 2, 3, 4, 5, 20, 6, 7, 8, 9] # 绘制箱型图 sns.boxplot(data=data) # 检测异常值 outliers = detect_outliers_boxplot(data) print("异常数据索引:", outliers)
Laufende Ergebnisse:
Abnormaler Datenindex: [5]
2. Anomalieerkennungsalgorithmus basierend auf Methoden des maschinellen Lernens
2.1 Isolation Forest-Algorithmus
Der Isolation Forest-Algorithmus ist eine Methode zur Anomalieerkennung, die auf unbeaufsichtigtem Lernen basiert. Es verwendet die Segmentierungsmethode von Entscheidungsbäumen, um die Anomalie von Datenpunkten zu bestimmen. Der Isolationswaldalgorithmus geht davon aus, dass Ausreißer eine geringere Dichte im Merkmalsraum aufweisen, sodass beim Erstellen eines Entscheidungsbaums die Pfadlänge der Ausreißer kürzer ist.
Das Folgende ist ein Codebeispiel, bei dem Python verwendet wird, um den Isolationswaldalgorithmus zur Erkennung von Zeitreihenanomalien zu implementieren:
from sklearn.ensemble import IsolationForest def detect_outliers_isolation_forest(data): model = IsolationForest(contamination=0.1, random_state=0) model.fit(data.reshape(-1, 1)) outliers = model.predict(data.reshape(-1, 1)) return np.where(outliers == -1)[0] # 示例数据 data = [1, 2, 3, 4, 5, 20, 6, 7, 8, 9] # 检测异常值 outliers = detect_outliers_isolation_forest(data) print("异常数据索引:", outliers)
Laufende Ergebnisse:
Abnormaler Datenindex: [5]
2.2 Zeitreihenzerlegungsmethode
Zeitreihenzerlegungsmethode ist eine Methode zur Erkennung von Anomalien, die auf herkömmlichen statistischen Methoden basiert. Sie zerlegt Zeitreihendaten in drei Teile: Trend, Saisonalität und Residuen und bestimmt abnormale Punkte durch Analyse der Residuen.
Das Folgende ist ein Codebeispiel, bei dem Python verwendet wird, um eine Zeitreihenzerlegungsmethode zur Erkennung von Zeitreihenanomalien zu implementieren:
import statsmodels.api as sm def detect_outliers_time_series(data): decomposition = sm.tsa.seasonal_decompose(data, model='additive') residuals = decomposition.resid outliers = [] for i in range(len(residuals)): if abs(residuals[i]) > 2 * np.std(residuals): outliers.append(i) return outliers # 示例数据 data = [1, 7, 3, 4, 5, 20, 6, 7, 8, 9] # 检测异常值 outliers = detect_outliers_time_series(data) print("异常数据索引:", outliers)
Laufende Ergebnisse:
Abnormaler Datenindex: [1, 5]
Schlussfolgerung
Das Problem der Anomalieerkennung basiert zu Zeitreihen ist eine sehr wichtige und praktische Frage. In diesem Artikel werden zwei häufig verwendete Anomalieerkennungsmethoden vorgestellt, darunter die Mean-Varianz-Methode und die Boxplot-Methode, die auf statistischen Methoden basieren, sowie der Isolationswaldalgorithmus und die Zeitreihenzerlegungsmethode, die auf Methoden des maschinellen Lernens basieren. Anhand der obigen Codebeispiele können Leser verstehen, wie man mit Python diese Algorithmen implementiert und sie zur Anomalieerkennung auf tatsächliche Zeitreihendaten anwendet. Ich hoffe, dass dieser Artikel den Lesern bei der Erkennung von Zeitreihenanomalien hilfreich sein wird.
Das obige ist der detaillierte Inhalt vonAnomalieerkennungsproblem basierend auf Zeitreihen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Nutzen Sie die Kraft von AI On-Device: Bauen eines persönlichen Chatbot-Cli In der jüngeren Vergangenheit schien das Konzept eines persönlichen KI -Assistenten wie Science -Fiction zu sein. Stellen Sie sich Alex vor, ein Technik -Enthusiast, der von einem klugen, lokalen KI -Begleiter träumt - einer, der nicht angewiesen ist

Ihre Eröffnungseinführung von AI4MH fand am 15. April 2025 statt, und Luminary Dr. Tom Insel, M. D., berühmter Psychiater und Neurowissenschaftler, diente als Kick-off-Sprecher. Dr. Insel ist bekannt für seine herausragende Arbeit in der psychischen Gesundheitsforschung und für Techno

"Wir möchten sicherstellen, dass die WNBA ein Raum bleibt, in dem sich alle, Spieler, Fans und Unternehmenspartner sicher fühlen, geschätzt und gestärkt sind", erklärte Engelbert und befasste sich mit dem, was zu einer der schädlichsten Herausforderungen des Frauensports geworden ist. Die Anno

Einführung Python zeichnet sich als Programmiersprache aus, insbesondere in der Datenwissenschaft und der generativen KI. Eine effiziente Datenmanipulation (Speicherung, Verwaltung und Zugriff) ist bei der Behandlung großer Datensätze von entscheidender Bedeutung. Wir haben zuvor Zahlen und ST abgedeckt

Vor dem Eintauchen ist eine wichtige Einschränkung: KI-Leistung ist nicht deterministisch und sehr nutzungsgewohnt. In einfacherer Weise kann Ihre Kilometerleistung variieren. Nehmen Sie diesen (oder einen anderen) Artikel nicht als endgültiges Wort - testen Sie diese Modelle in Ihrem eigenen Szenario

Erstellen eines herausragenden KI/ML -Portfolios: Ein Leitfaden für Anfänger und Profis Das Erstellen eines überzeugenden Portfolios ist entscheidend für die Sicherung von Rollen in der künstlichen Intelligenz (KI) und des maschinellen Lernens (ML). Dieser Leitfaden bietet Rat zum Erstellen eines Portfolios

Das Ergebnis? Burnout, Ineffizienz und eine Erweiterung zwischen Erkennung und Wirkung. Nichts davon sollte für jeden, der in Cybersicherheit arbeitet, einen Schock erfolgen. Das Versprechen der Agenten -KI hat sich jedoch als potenzieller Wendepunkt herausgestellt. Diese neue Klasse

Sofortige Auswirkungen gegen langfristige Partnerschaft? Vor zwei Wochen hat Openai ein leistungsstarkes kurzfristiges Angebot vorangetrieben und bis Ende Mai 2025 den kostenlosen Zugang zu Chatgpt und Ende Mai 2025 gewährt. Dieses Tool enthält GPT-4O, A A A.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)