suchen
HeimTechnologie-PeripheriegeräteKI770 Millionen Parameter, mehr als 540 Milliarden PaLM! UW Google schlägt eine „schrittweise Destillation' vor, die nur 80 % der Trainingsdaten ACL 2023 erfordert

Große Sprachmodelle zeichnen sich durch hervorragende Leistung aus und sind in der Lage, neue Aufgaben mit Null- oder Wenig-Schuss-Hinweisen zu lösen. Bei der tatsächlichen Anwendungsbereitstellung ist LLM jedoch nicht sehr praktisch, da es eine geringe Speicherauslastungseffizienz aufweist und viele Rechenressourcen erfordert. Beispielsweise sind für die Ausführung eines Sprachmodelldienstes mit 175 Milliarden Parametern mindestens 350 GB Videospeicher erforderlich Stand der Technik Die meisten Sprachmodelle haben mehr als 500 Milliarden Parameter. Viele Forschungsteams verfügen nicht über genügend Ressourcen, um sie auszuführen, und sie können die Leistung mit geringer Latenz in realen Anwendungen nicht erreichen.

Es gibt auch einige Studien, die manuell gekennzeichnete Daten oder Destillation mithilfe von LLM-generierten Etiketten verwenden, um kleinere, aufgabenspezifische Modelle zu trainieren. Für die Feinabstimmung und Destillation ist jedoch eine große Menge an Trainingsdaten erforderlich, um eine mit LLM vergleichbare Leistung zu erzielen.

Um das Problem des Ressourcenbedarfs für große Modelle zu lösen, haben die University of Washington und Google gemeinsam einen neuen Destillationsmechanismus namens „Distilling Step-by-Step“ vorgeschlagen. Durch die schrittweise Destillation ist die Größe des destillierten Modells kleiner als die des Originalmodells, aber die Leistung ist besser und während des Feinabstimmungs- und Destillationsprozesses sind weniger Trainingsdaten erforderlich

7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

Bitte klicken Sie auf „Anzeigen“. Das Papier unter folgendem Link: https://arxiv.org/abs/2305.02301 Der Verteilungsdestillationsmechanismus verwendet die aus LLM extrahierten Vorhersagegründe (Rationale) als zusätzliche Überwachungsinformationen für das Training kleiner Modelle innerhalb eines Multitasking-Frameworks.

Nach der Durchführung von Experimenten mit 4 NLP-Benchmarks haben wir Folgendes festgestellt:

1. Im Vergleich zu Feinabstimmung und Destillation erzielt dieser Mechanismus eine bessere Leistung mit weniger Trainingsbeispielen Größe von Modellen, um eine bessere Leistung zu erzielen7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

3 Gleichzeitig kann durch die Reduzierung der Modellgröße und des Datenvolumens auch eine bessere Leistung erzielt werden als bei LLM.

Im Experiment übertraf das 770M T5-Modell nach der Feinabstimmung das 540B PaLM-Modell mit wenigen Beispielhinweisen im Benchmark-Test und nutzte nur 80 % der verfügbaren Daten, während das gleiche T5-Modell mit Standard-Feinabstimmung überhaupt Schwierigkeiten hatte 100 % des Datensatzes stimmen überein.

Destillationsmethode

Die Schlüsselidee der Verteilungsdestillation besteht darin, schrittweise die informativen und in natürlicher Sprache beschriebenen Vorhersagegründe zu extrahieren, dh den Zwischenschlussschritt, um den Zusammenhang zwischen dem Eingabeproblem und der Modellausgabe zu erklären , und nutzen Sie diese Daten, um effizienter zu sein. Training kleiner Modelle

Die Verteilungsdestillation umfasst hauptsächlich zwei Phasen:

1. Extrahieren von Prinzipien (Begründung) aus LLM 7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

Forscher verwenden eine Denkkette mit wenigen Schüssen ( CoT) fordert zum Extrahieren von Zwischenschritten aus LLM Predict auf.

Nachdem Sie die Zielaufgabe festgelegt haben, bereiten Sie zunächst einige Beispiele in der LLM-Eingabeaufforderung vor. Jedes Beispiel besteht aus einem Triplett, einschließlich Eingabe, Prinzip und Ausgabe.

Nach der Eingabe von Eingabeaufforderungen ist LLM in der Lage, die Triplett-Demonstration zu imitieren, um Vorhersageprinzipien für andere neue Fragen zu generieren, beispielsweise für die Frage-und-Antwort-Aufgabe des gesunden Menschenverstandes , gegebene

Eingabefrage:

Sammy möchte an einen Ort gehen, an dem sich Menschen treffen. Wo wird er wählen? Antwortmöglichkeiten: (a) besiedelte Gebiete, (b) Rennstrecke, (c) Wüste, (d) Wohnung, (e) Straßensperre)7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

Nach schrittweiser Verfeinerung kann LLM die richtige Antwort auf die Frage „(a)“ geben. Bevölkerung „Dicht besiedelte Gebiete“ und geben Sie Gründe für die Beantwortung der Frage an: „Die Antwort muss ein Ort mit vielen Menschen sein. Von den oben genannten Auswahlmöglichkeiten haben nur dicht besiedelte Gebiete viele Menschen.“ Nach schrittweiser Verfeinerung kam LLM zu dem Schluss, dass die richtige Antwort „(ein) dicht besiedeltes Gebiet“ ist, und gab den Grund für die Beantwortung der Frage an: „Die Antwort muss ein Ort mit vielen Menschen sein. Unter den oben genannten Auswahlmöglichkeiten sind nur dicht besiedelte Gebiete.“ viele Leute haben. „Menschen.“

Durch die Bereitstellung von CoT-Beispielen gepaart mit Begründungen in Eingabeaufforderungen ermöglicht die kontextbezogene Lernfunktion LLM, entsprechende Antwortgründe für nicht angetroffene Fragetypen zu generieren

2. Trainieren Sie kleine Modelle. Die Vorhersagegründe können extrahiert und in das kleine Trainingsmodell integriert werden Zusätzlich zur Standardaufgabe zur Etikettenvorhersage verwendeten die Forscher auch eine neue Aufgabe zur Generierung von Gründen, um das kleine Modell zu trainieren, damit das Modell lernen kann, Benutzer zu generieren ein Zwischeninferenzschritt für die Vorhersage und leitet das Modell an, die Ergebnisbezeichnung besser vorherzusagen.

Unterscheiden Sie Etikettenvorhersage- und Begründungsgenerierungsaufgaben, indem Sie der Eingabeaufforderung die Aufgabenpräfixe „Label“ und „Begründung“ hinzufügen.

Experimentelle Ergebnisse

In dem Experiment wählten die Forscher das PaLM-Modell mit 540 Milliarden Parametern als LLM-Basislinie und verwendeten das T5-Modell als aufgabenbezogenes Downstream-Kleinmodell.

In dieser Studie haben wir Experimente mit vier Benchmark-Datensätzen durchgeführt, nämlich e-SNLI und ANLI für das Denken in natürlicher Sprache, CQA für die Beantwortung von Fragen mit gesundem Menschenverstand und SVAMP für Fragen zu arithmetischen Mathematikanwendungen. Wir haben Experimente zu diesen drei verschiedenen NLP-Aufgaben durchgeführt Die Standard-Feinabstimmung wird erreicht, wenn 12,5 % des gesamten Datensatzes verwendet werden, und nur 75 %, 25 % bzw. 20 % der Trainingsdaten sind für ANLI, CQA und SVAMP erforderlich.

Im Vergleich zur Standard-Feinabstimmung an vom Menschen markierten Datensätzen unterschiedlicher Größe unter Verwendung eines 220M-T5-Modells übertrifft die Verteilungsdestillation die Standard-Feinabstimmung am gesamten Datensatz, wenn weniger Trainingsbeispiele für alle Datensätze verwendet werden.

Kleinere Bereitstellung Modellgröße

Im Vergleich zu LLM, das durch CoT mit wenigen Stichproben ausgelöst wird, ist die durch Verteilungsdestillation erhaltene Modellgröße viel kleiner, aber die Leistung ist besser.

Im e-SNLI-Datensatz wird mit dem 220M T5-Modell eine bessere Leistung als mit dem 540B PaLM erzielt; mit dem 770M T5-Modell wird eine bessere Leistung als mit dem 540B PaLM erzielt, und die Modellgröße beträgt nur 1/700

7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

Kleineres Modell, weniger Daten

Während wir die Modellgröße und die Trainingsdaten reduziert haben, haben wir erfolgreich eine Leistung erreicht, die über wenige PaLM-Aufnahmen hinausgeht.In ANLI übertrifft das T5-Modell mit 770M das 540B PaLM, während es nur 80 % des gesamten Datensatzes nutzt

Es wurde beobachtet, dass die Standard-Feinabstimmung nicht das Leistungsniveau von PaLM erreichen kann, selbst wenn der vollständige 100-%-Datensatz verwendet wird. Dies zeigt, dass durch schrittweise Destillation gleichzeitig die Modellgröße und das Trainingsdatenvolumen reduziert werden können, wodurch eine Leistung erreicht wird, die über LLM hinausgeht

Das obige ist der detaillierte Inhalt von770 Millionen Parameter, mehr als 540 Milliarden PaLM! UW Google schlägt eine „schrittweise Destillation' vor, die nur 80 % der Trainingsdaten ACL 2023 erfordert. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Dieser Artikel ist reproduziert unter:51CTO.COM. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen
10 generative AI -Codierungsweiterungen im VS -Code, die Sie untersuchen müssen10 generative AI -Codierungsweiterungen im VS -Code, die Sie untersuchen müssenApr 13, 2025 am 01:14 AM

Hey da, codieren Ninja! Welche Codierungsaufgaben haben Sie für den Tag geplant? Bevor Sie weiter in diesen Blog eintauchen, möchte ich, dass Sie über all Ihre Coding-Leiden nachdenken-die Auflistung auflisten diese auf. Erledigt? - Lassen Sie ’

Kochen innovation: Wie künstliche Intelligenz den Lebensmittelservice verändertKochen innovation: Wie künstliche Intelligenz den Lebensmittelservice verändertApr 12, 2025 pm 12:09 PM

KI verstärken die Zubereitung der Lebensmittel KI -Systeme werden während der Nahten immer noch in der Zubereitung von Nahrungsmitteln eingesetzt. KI-gesteuerte Roboter werden in Küchen verwendet, um Aufgaben zur Zubereitung von Lebensmitteln zu automatisieren, z.

Umfassende Anleitung zu Python -Namespaces und variablen ScopesUmfassende Anleitung zu Python -Namespaces und variablen ScopesApr 12, 2025 pm 12:00 PM

Einführung Das Verständnis der Namespaces, Scopes und des Verhaltens von Variablen in Python -Funktionen ist entscheidend, um effizient zu schreiben und Laufzeitfehler oder Ausnahmen zu vermeiden. In diesem Artikel werden wir uns mit verschiedenen ASP befassen

Ein umfassender Leitfaden zu Vision Language Models (VLMs)Ein umfassender Leitfaden zu Vision Language Models (VLMs)Apr 12, 2025 am 11:58 AM

Einführung Stellen Sie sich vor, Sie gehen durch eine Kunstgalerie, umgeben von lebhaften Gemälden und Skulpturen. Was wäre, wenn Sie jedem Stück eine Frage stellen und eine sinnvolle Antwort erhalten könnten? Sie könnten fragen: „Welche Geschichte erzählst du?

MediaTek steigert die Premium -Aufstellung mit Kompanio Ultra und Abmessung 9400MediaTek steigert die Premium -Aufstellung mit Kompanio Ultra und Abmessung 9400Apr 12, 2025 am 11:52 AM

In diesem Monat hat MediaTek in diesem Monat eine Reihe von Ankündigungen gemacht, darunter das neue Kompanio Ultra und die Abmessung 9400. Diese Produkte füllen die traditionelleren Teile von MediaTeks Geschäft aus, die Chips für Smartphone enthalten

Diese Woche in AI: Walmart setzt Modetrends vor, bevor sie jemals passierenDiese Woche in AI: Walmart setzt Modetrends vor, bevor sie jemals passierenApr 12, 2025 am 11:51 AM

#1 Google gestartet Agent2Agent Die Geschichte: Es ist Montagmorgen. Als mit KI betriebener Personalvermittler arbeiten Sie intelligenter, nicht härter. Sie melden sich im Dashboard Ihres Unternehmens auf Ihrem Telefon an. Es sagt Ihnen, dass drei kritische Rollen bezogen, überprüft und geplant wurden

Generative KI trifft PsychobabbleGenerative KI trifft PsychobabbleApr 12, 2025 am 11:50 AM

Ich würde vermuten, dass du es sein musst. Wir alle scheinen zu wissen, dass Psychobabble aus verschiedenen Geschwätzern besteht, die verschiedene psychologische Terminologie mischen und oft entweder unverständlich oder völlig unsinnig sind. Alles was Sie tun müssen, um fo zu spucken

Der Prototyp: Wissenschaftler verwandeln Papier in PlastikDer Prototyp: Wissenschaftler verwandeln Papier in PlastikApr 12, 2025 am 11:49 AM

Laut einer neuen Studie, die diese Woche veröffentlicht wurde, wurden im Jahr 2022 nur 9,5% der im Jahr 2022 hergestellten Kunststoffe aus recycelten Materialien hergestellt. In der Zwischenzeit häufen sich Plastik weiter in Deponien - und Ökosystemen - um die Welt. Aber Hilfe ist unterwegs. Ein Team von Engin

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung