Wie implementiert man den Naive Bayes-Algorithmus mit Python?
Wie implementiert man den Naive Bayes-Algorithmus mit Python?
Einführung:
Der Naive Bayes-Algorithmus ist ein Klassifizierungsalgorithmus, der auf der Wahrscheinlichkeitstheorie basiert und häufig in der Textklassifizierung, Spam-Filterung, Stimmungsanalyse und anderen Bereichen verwendet wird. In diesem Artikel werden die Prinzipien des Naive-Bayes-Algorithmus kurz vorgestellt und Codebeispiele für die Implementierung des Naive-Bayes-Algorithmus mit Python gegeben.
1. Prinzip des Naive-Bayes-Algorithmus
- Bedingte Wahrscheinlichkeit und Bayes-Formel
Der Naive-Bayes-Algorithmus basiert auf bedingter Wahrscheinlichkeit und Bayes-Formel. Die bedingte Wahrscheinlichkeit bezieht sich auf die Wahrscheinlichkeit des Eintretens von Ereignis B, vorausgesetzt, dass das Eintreten von Ereignis A bekannt ist.
Die Bayes-Formel wird verwendet, um die Wahrscheinlichkeit des Eintretens von Ereignis A bei bekanntem Eintreten von Ereignis B zu berechnen.
-
Prinzip des Naive-Bayes-Algorithmus
Der Naive-Bayes-Algorithmus berechnet die Wahrscheinlichkeit, dass die Eingabe zu jeder gegebenen Kategorie gehört, und ordnet die Eingabe dann der Kategorie mit der höchsten Wahrscheinlichkeit zu. Das Grundprinzip kann als folgende Formel ausgedrückt werden:P(类别|特征) = P(特征|类别) * P(类别) / P(特征)
wobei P (Kategorie|Merkmal) die hintere Wahrscheinlichkeit ist, die die Wahrscheinlichkeit einer bestimmten Kategorie angesichts der Merkmale angibt;
P (Merkmal|Kategorie) die Wahrscheinlichkeit ist , stellt die Wahrscheinlichkeit dar, dass das Merkmal zu einer bestimmten Kategorie gehört;
P (Kategorie) ist die A-priori-Wahrscheinlichkeit, die die Wahrscheinlichkeit angibt, dass die Kategorie in den Gesamtdaten auftritt; Wahrscheinlichkeitssumme ist 1.
Das Folgende ist ein einfacher Beispielcode, der zeigt, wie Sie Python verwenden, um den Naive-Bayes-Algorithmus für die Textklassifizierung zu implementieren.
import numpy as np class NaiveBayes: def __init__(self): self.classes = None self.class_priors = None self.feature_likelihoods = None def fit(self, X, y): self.classes = np.unique(y) self.class_priors = np.zeros(len(self.classes)) self.feature_likelihoods = np.zeros((len(self.classes), X.shape[1])) for i, c in enumerate(self.classes): X_c = X[y == c] self.class_priors[i] = len(X_c) / len(X) self.feature_likelihoods[i] = np.mean(X_c, axis=0) def predict(self, X): preds = [] for x in X: likelihoods = [] for i, c in enumerate(self.classes): likelihood = np.prod(self.feature_likelihoods[i] ** x * (1 - self.feature_likelihoods[i]) ** (1 - x)) likelihoods.append(likelihood) pred = self.classes[np.argmax(likelihoods)] preds.append(pred) return predsIm obigen Code ist die NaiveBayes-Klasse unsere benutzerdefinierte Klasse und enthält zwei Methoden: Fit und Predict. Die Anpassungsmethode wird zum Trainieren des Modells verwendet, wobei die Trainingsdaten X und die Bezeichnung y als Eingabe akzeptiert werden. Zunächst werden alle nicht doppelten Kategorien abgerufen und die A-priori-Wahrscheinlichkeit jeder Kategorie berechnet. Anschließend wird für jede Kategorie die Wahrscheinlichkeit berechnet, die jedem Merkmal entspricht, d. h. der Mittelwert der Wahrscheinlichkeit, dass das Merkmal in dieser Kategorie vorkommt. Die Vorhersagemethode wird zur Vorhersage neuer Beispieldaten verwendet und akzeptiert Testdaten X als Eingabe. Es geht jedes Eingabebeispiel durch, berechnet die Wahrscheinlichkeit jeder Kategorie und wählt die Kategorie mit der höchsten Wahrscheinlichkeit als Vorhersageergebnis aus. 3. Zusammenfassung
Dieser Artikel stellt das Prinzip des Naive Bayes-Algorithmus vor und gibt ein Codebeispiel für die Verwendung von Python zur Implementierung des Naive Bayes-Algorithmus. Der Naive-Bayes-Algorithmus ist ein einfacher und effektiver Klassifizierungsalgorithmus mit hoher Effektivität und Effizienz in praktischen Anwendungen. Wenn Sie die Prinzipien des Naive-Bayes-Algorithmus verstehen und Code in Python schreiben, können Sie den Naive-Bayes-Algorithmus besser zur Lösung praktischer Probleme anwenden.
Das obige ist der detaillierte Inhalt vonWie implementiert man den Naive Bayes-Algorithmus mit Python?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Durch die folgenden Schritte können mehrdimensionale Arrays mit Numpy erstellt werden: 1) Verwenden Sie die Funktion numpy.array (), um ein Array wie NP.Array ([1,2,3], [4,5,6]) zu erstellen, um ein 2D-Array zu erstellen; 2) Verwenden Sie np.zeros (), np.ones (), np.random.random () und andere Funktionen, um ein Array zu erstellen, das mit spezifischen Werten gefüllt ist; 3) Verstehen Sie die Form- und Größeneigenschaften des Arrays, um sicherzustellen, dass die Länge des Unterarrays konsistent ist und Fehler vermeiden. 4) Verwenden Sie die Funktion np.reshape (), um die Form des Arrays zu ändern. 5) Achten Sie auf die Speichernutzung, um sicherzustellen, dass der Code klar und effizient ist.

SendeminnumpyissamethodtoperformoperationsonarraysofdifferentShapesByAutomaticaligningTHem.itsimplifiesCode, Verbesserung der Verschiebbarkeit, und BoostSPerformance.her'Showitworks: 1) kleinereArraysArepaddedwithonestOMatchDimens.2) compatibledimens

Forpythondatastorage, ChooselistsforflexibilitätswithmixedDatatypes, Array.Arrayformemory-effizientesHomogenoususnumericalData und NumpyArraysForAdvancedNumericalComputing.ListsareversAntileffictionForLarGenicalDataSetsetaSets;

PythonlistsarebetterTterThanarraysFormAnagingDiversedatatypes.1) ListScanholdElements ofdifferenttypes, 2) siearedynamic, erlauben EasyDitionSsandremovals, 3) sie antelluitive Operationenslikesklikationen, Buth), sie ohne Ereignis-effosidentandslowentlaunenfeuer.

ToaccesselementSinapythonarray, useIndexing: my_array [2] AccessaThThirtelement, returning3.pythonuseszero-basiertindexing.1) usepositiveAndnegativeIndexing: my_list [0] fORGHEFIRSTELEMENT, MY_LIST [-1] Forthelast.2) VerwendungsforArange: my_list [1: 5] extractsselemen

In Artikel wird die Unmöglichkeit des Tupelverständnisses in Python aufgrund von Syntax -Mehrdeutigkeiten erörtert. Alternativen wie die Verwendung von Tuple () mit Generatorausdrücken werden vorgeschlagen, um Tupel effizient zu erstellen (159 Zeichen)

Der Artikel erläutert Module und Pakete in Python, deren Unterschiede und Verwendung. Module sind einzelne Dateien, während Pakete Verzeichnisse mit einer __init__.py -Datei sind, die verwandte Module hierarchisch organisieren.

In Artikel werden Docstrings in Python, deren Nutzung und Vorteile erörtert. Hauptproblem: Bedeutung von DocStrings für die Code -Dokumentation und -zugriffsfunktion.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool
