suchen
HeimBackend-EntwicklungC++Ermitteln Sie in C++ die Fakultäts- und Suffixsumme eines Arrays in einem bestimmten Array

Ermitteln Sie in C++ die Fakultäts- und Suffixsumme eines Arrays in einem bestimmten Array

Das Entdecken von Suffix-Fakultäten und entsprechenden Suffix-Summen aus Arrays ist durchaus machbar, wenn Sie die Werkzeuge und Techniken der Programmiersprache C++ verstehen. Genau das werden wir in diesem Artikel besprechen, einschließlich Methodensyntax, algorithmischer Komplexität und effizienten Möglichkeiten, diese zu entschlüsseln. Darüber hinaus zeigt dieser Artikel zwei konkrete Codebeispiele, die auf diesen Methoden basieren. Abschließend fassen wir unsere Erkenntnisse zu den wichtigsten Erkenntnissen zusammen.

Grammatik

Um ein klares Verständnis der kommenden Codebeispiele zu gewährleisten, machen Sie sich bitte mit der Syntax der verwendeten Methoden vertraut, bevor Sie sich mit deren Algorithmen befassen.

// Method syntax
<return_type> methodName(<parameters>) {
   // Method implementation
}

Algorithmus

Lassen Sie uns nun den Schritt-für-Schritt-Algorithmus zum Ermitteln der Suffix-Fakultät und der Suffix-Summe für Arrays skizzieren −

  • Initialisieren Sie ein leeres Array, um Suffix-Fakultäten zu speichern.

  • Um diese Mission erfolgreich abzuschließen. Es wird empfohlen, das bereitgestellte Array in umgekehrter Reihenfolge zu iterieren. In jeder Iteration muss die Fakultätsberechnung für das aktuelle Element durchgeführt werden und das Ergebnis wird in einem zusätzlichen Suffix-Fakultätsarray gespeichert.

  • Initialisieren Sie das Suffix-Summen-Array mit dem letzten Element des angegebenen Arrays.

  • Durchlaufen Sie das Suffix-Fakultätsarray in umgekehrter Reihenfolge.

  • Für jedes Element im Suffix-Fakultätsarray wird die entsprechende Suffixsumme durch Addition zur vorherigen Summe berechnet und im Suffixsummenarray gespeichert.

Methode 1: Iterative Methode

In dieser Methode verwenden wir eine iterative Methode, um Suffix-Fakultäten und Suffix-Summen-Arrays zu finden.

Die chinesische Übersetzung von

Beispiel

lautet:

Beispiel

#include <iostream>

// Function to calculate the factorial of a given number
int factorial(int n) {
   int fact = 1;
   for (int i = 2; i <= n; i++) {
      fact *= i;
   }
   return fact;
}

int main() {
   // Initialize the given array
   int arr[] = {1, 2, 3, 4, 5};
   int n = sizeof(arr) / sizeof(arr[0]);

   // Create an array to store the suffix factorials
   int suffixFactorials[n];

   // Calculate the suffix factorials
   for (int i = n - 1; i >= 0; i--) {
      suffixFactorials[i] = factorial(arr[i]);
   }
   
   // Create an array to store the suffix sum
   int suffixSum[n];
   
   // Calculate the suffix sum
   suffixSum[n - 1] = arr[n - 1];
   for (int i = n - 2; i >= 0; i--) {
      suffixSum[i] = suffixSum[i + 1] + suffixFactorials[i];
   }
   
   // Output the suffix factorials and the suffix sum
   for (int i = 0; i < n; i++) {
      std::cout << "Suffix Factorial[" << i << "]: " << suffixFactorials[i] << std::endl;
      std::cout << "Suffix Sum[" << i << "]: " << suffixSum[i] << std::endl;
   }
   return 0;
}

Ausgabe

Suffix Factorial[0]: 1
Suffix Sum[0]: 38
Suffix Factorial[1]: 2
Suffix Sum[1]: 37
Suffix Factorial[2]: 6
Suffix Sum[2]: 35
Suffix Factorial[3]: 24
Suffix Sum[3]: 29
Suffix Factorial[4]: 120
Suffix Sum[4]: 5

Erklärung

wird übersetzt als:

Erklärung

Die iterative Methode zum Finden von Suffix-Fakultäts- und Suffix-Summen-Arrays beinhaltet das Durchlaufen des gegebenen Arrays in umgekehrter Reihenfolge. Für jedes Element im Array wird die Fakultät mithilfe einer iterativen Methode berechnet und in einem Suffix-Fakultätsarray gespeichert. Erstellt und initialisiert Suffix und Array gleichzeitig, wobei der Anfangswert das letzte Element des angegebenen Arrays ist. Die Umsetzung einer einfachen, aber effektiven Strategie kann dieses Problem gleichzeitig einfach und effizient lösen. Der erste Schritt besteht darin, das Suffix-Fakultätsarray zu durchlaufen, es jedoch in umgekehrter Reihenfolge statt in Vorwärtsreihenfolge beizubehalten. Mithilfe dieser Durchquerung können wir jede Suffixsumme einfach berechnen, indem wir sie zu ihrer vorherigen Berechnung hinzufügen und in unsere Zielausgabevariable kodieren.

Methode 2: Rekursive Methode

Unsere Strategie besteht darin, das Hamming-Distanzkonzept zur Lösung des gestellten Problems zu nutzen.

Die chinesische Übersetzung von

Beispiel

lautet:

Beispiel

#include <iostream>

// Function to calculate the factorial of a given number recursively
int factorial(int n) {
   if (n == 0 || n == 1) {
      return 1;
   }
   return n * factorial(n - 1);
}

int main() {
   // Initialize the given array
   int arr[] = {1, 2, 3, 4, 5};
   int n = sizeof(arr) / sizeof(arr[0]);

   // Create an array to store the suffix factorials
   int suffixFactorials[n];

   // Calculate the suffix factorials
   for (int i = n - 1; i >= 0; i--) {
      suffixFactorials[i] = factorial(arr[i]);
   }

   // Create an array to store the suffix sum
   int suffixSum[n];

   // Calculate the suffix sum
   suffixSum[n - 1] = arr[n - 1];
   for (int i = n - 2; i >= 0; i--) {
      suffixSum[i] = suffixSum[i + 1] + suffixFactorials[i];
   }

   // Output the suffix factorials and the suffix sum
   for (int i = 0; i < n; i++) {
      std::cout << "Suffix Factorial[" << i << "]: " << suffixFactorials[i] << std::endl;
      std::cout << "Suffix Sum[" << i << "]: " << suffixSum[i] << std::endl;
   }
   return 0;
}

Ausgabe

Suffix Factorial[0]: 1
Suffix Sum[0]: 38
Suffix Factorial[1]: 2
Suffix Sum[1]: 37
Suffix Factorial[2]: 6
Suffix Sum[2]: 35
Suffix Factorial[3]: 24
Suffix Sum[3]: 29
Suffix Factorial[4]: 120
Suffix Sum[4]: 5

Erklärung

wird übersetzt als:

Erklärung

Um die faktoriellen und summierten Suffix-Arrays zu erhalten, wird eine rekursive Strategie verwendet. Die rekursive Funktion iteriert ausgehend vom Ende des angegebenen Arrays rückwärts und berechnet ihre Fakultät. Diese Werte werden dann im zugehörigen Suffix-Fakultätsarray gespeichert. Der nächste Schritt besteht darin, ein neues Suffix-Summen-Array zu initialisieren, indem ihm das letzte Element der Eingabesammlung zugewiesen wird. Die Tabellierung der Summationsberechnungen in diesem neu generierten Array, während die Berechnungen über den zuvor erstellten Fakultätssatz in umgekehrter Reihenfolge iteriert werden, führt zu den gewünschten Ergebnissen durch den effizienten Einsatz der rekursiven Iteration.

Fazit

Zusammenfassend untersuchen wir mit der Programmiersprache C++ das Konzept der Identifizierung von Suffix-Fakultäten und des Abgleichs von Suffix-Summen-Arrays in einem Eingabe-Array. Unsere Analyse ergab zwei unterschiedliche Ansätze: iterativ und rekursiv. Darüber hinaus haben wir genaue Codebeispiele beigefügt, um die Funktionalität jeder Methode effektiv zu demonstrieren. Durch das Verständnis und die Implementierung dieser Methoden können Sie ähnliche Probleme bei der Berechnung von Suffix-Fakultäten und Suffix-Summen mit Arrays effizient lösen. Erforschen und probieren Sie weiterhin verschiedene Algorithmen aus, um Ihre Programmierkenntnisse zu verbessern.

Das obige ist der detaillierte Inhalt vonErmitteln Sie in C++ die Fakultäts- und Suffixsumme eines Arrays in einem bestimmten Array. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Dieser Artikel ist reproduziert unter:tutorialspoint. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen
C# und C: Erforschen der verschiedenen ParadigmenC# und C: Erforschen der verschiedenen ParadigmenMay 08, 2025 am 12:06 AM

Die Hauptunterschiede zwischen C# und c sind die Speichermanagement, die Implementierung der Polymorphismus und die Leistungsoptimierung. 1) C# verwendet einen Müllsammler, um den Speicher automatisch zu verwalten, während C manuell verwaltet werden muss. 2) C# realisiert den Polymorphismus durch Schnittstellen und virtuelle Methoden, und C verwendet virtuelle Funktionen und reine virtuelle Funktionen. 3) Die Leistungsoptimierung von C# hängt von der Struktur und der parallele Programmierung ab, während C durch Inline -Funktionen und Multithreading implementiert wird.

C XML Parsing: Techniken und Best PracticesC XML Parsing: Techniken und Best PracticesMay 07, 2025 am 12:06 AM

Die DOM- und SAX -Methoden können verwendet werden, um XML -Daten in C. 1) DOM -Parsen XML in Speicher zu analysieren, für kleine Dateien geeignet, können jedoch viel Speicher in Anspruch nehmen. 2) SAX-Parsing ist ereignisgetrieben und für große Dateien geeignet, kann jedoch nicht zufällig zugegriffen werden. Die Auswahl der richtigen Methode und Optimierung des Codes kann die Effizienz verbessern.

C In bestimmten Bereichen: Erforschen der HochburgenC In bestimmten Bereichen: Erforschen der HochburgenMay 06, 2025 am 12:08 AM

C wird aufgrund seiner hohen Leistung und Flexibilität in den Bereichen Spieleentwicklung, eingebettete Systeme, Finanztransaktionen und wissenschaftliches Computing häufig eingesetzt. 1) In der Spielentwicklung wird C für effizientes Grafikwiedergabe und Echtzeit-Computing verwendet. 2) In eingebetteten Systemen machen Cs Speicherverwaltung und Hardware -Steuerungsfunktionen die erste Wahl. 3) Im Bereich Finanztransaktionen entspricht die hohe Leistung von C den Anforderungen des Echtzeit-Computing. 4) Im wissenschaftlichen Computing werden die effizienten Funktionen der Algorithmus -Implementierung und der Datenverarbeitungsfunktionen von C vollständig reflektiert.

Debunking die Mythen: Ist C wirklich eine tote Sprache?Debunking die Mythen: Ist C wirklich eine tote Sprache?May 05, 2025 am 12:11 AM

C ist nicht tot, aber in vielen Schlüsselbereichen floriert: 1) Spielentwicklung, 2) Systemprogrammierung, 3) Hochleistungs-Computing, 4) Browser und Netzwerkanwendungen, C ist immer noch die Mainstream-Wahl und zeigt seine starken Vitalitäts- und Anwendungsszenarien.

C# vs. c: Eine vergleichende Analyse der ProgrammiersprachenC# vs. c: Eine vergleichende Analyse der ProgrammiersprachenMay 04, 2025 am 12:03 AM

Die Hauptunterschiede zwischen C# und c sind Syntax, Speicherverwaltung und Leistung: 1) C# Syntax ist modern, unterstützt Lambda und Linq und C hält C -Funktionen und unterstützt Vorlagen. 2) C# verwaltet den Speicher automatisch, C muss manuell verwaltet werden. 3) C -Leistung ist besser als C#, aber auch die C# -Leistung wird optimiert.

Erstellen von XML -Anwendungen mit C: Praktische BeispieleErstellen von XML -Anwendungen mit C: Praktische BeispieleMay 03, 2025 am 12:16 AM

Sie können die Bibliotheken TinyXML, PugixML oder LIBXML2 verwenden, um XML -Daten in C. 1) XML -Dateien zu verarbeiten: Verwenden Sie DOM- oder SAX -Methoden, DOM ist für kleine Dateien geeignet und SAX ist für große Dateien geeignet. 2) XML -Datei generieren: Konvertieren Sie die Datenstruktur in das XML -Format und schreiben Sie in die Datei. In diesen Schritten können XML -Daten effektiv verwaltet und manipuliert werden.

XML in C: Umgang mit komplexen DatenstrukturenXML in C: Umgang mit komplexen DatenstrukturenMay 02, 2025 am 12:04 AM

Die Arbeit mit XML -Datenstrukturen in C kann die Bibliothek mit TinyXML oder Pugixml verwenden. 1) Verwenden Sie die PugixML -Bibliothek, um XML -Dateien zu analysieren und zu generieren. 2) Behandeln Sie komplexe verschachtelte XML -Elemente wie Buchinformationen. 3) Optimieren Sie den XML -Verarbeitungscode und es wird empfohlen, effiziente Bibliotheken und Streaming -Parsen zu verwenden. In diesen Schritten können XML -Daten effizient verarbeitet werden.

C und Leistung: Wo es noch dominiertC und Leistung: Wo es noch dominiertMay 01, 2025 am 12:14 AM

C dominiert immer noch die Leistungsoptimierung, da die Leistungsverwaltung und die effizienten Ausführungsfunktionen auf niedrigem Level für Spielentwicklung, Finanztransaktionssysteme und eingebettete Systeme unverzichtbar machen. Insbesondere manifestiert es sich als: 1) In der Spieleentwicklung machen Cs Memory Management und effiziente Ausführungsfunktionen von C die bevorzugte Sprache für die Entwicklung der Spiele-Engine. 2) In Finanztransaktionssystemen gewährleisten die Leistungsvorteile von C eine extrem geringe Latenz und einen hohen Durchsatz. 3) In eingebetteten Systemen machen Cs niedrigem Speichermanagement und effiziente Ausführungsfunktionen es in ressourcenbeschränkten Umgebungen sehr beliebt.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung