Heim >Backend-Entwicklung >Python-Tutorial >Wie implementiert man eine lineare Klassifizierung mit Python Scikit-learn?
Die lineare Klassifizierung ist eines der einfachsten Probleme des maschinellen Lernens. Um eine lineare Klassifizierung zu erreichen, verwenden wir den SGD-Klassifikator (Stochastic Gradient Descent) von sklearn, um Irisblütensorten vorherzusagen.
Sie können eine lineare Klassifizierung mit Python Scikit-learn implementieren, indem Sie die folgenden Schritte ausführen:
Schritt 1 − Importieren Sie zunächst die notwendigen Pakete scikit-learn, NumPy und matplotlib
Schritt 2 − Laden Sie den Datensatz und erstellen Sie Trainings- und Testdatensätze.
Schritt 3 − Verwenden Sie matplotlib, um die Trainingsinstanz zu zeichnen. Obwohl dieser Schritt optional ist, empfiehlt es sich, das Beispiel deutlicher zu veranschaulichen.
Schritt 4 − Erstellen Sie ein Objekt des SGD-Klassifikators, initialisieren Sie seine Parameter und trainieren Sie das Modell mit der fit()-Methode.
Schritt 5 − Bewerten Sie die Ergebnisse mithilfe des Metrikpakets der Python Scikit-learn-Bibliothek.
Sehen wir uns das folgende Beispiel an, in dem wir die Art einer Irisblume anhand von zwei Merkmalen der Irisblume vorhersagen, nämlich der Kelchblattbreite und der Kelchblattlänge.
# Import required libraries import sklearn import numpy as np import matplotlib.pyplot as plt # %matplotlib inline # Loading Iris flower dataset from sklearn import datasets iris = datasets.load_iris() X_data, y_data = iris.data, iris.target # Print iris data shape print ("Original Dataset Shape:",X_data.shape, y_data.shape) # Dividing dataset into training and testing dataset and standarized the features from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # Getting the Iris dataset with only the first two attributes X, y = X_data[:,:2], y_data # Split the dataset into a training and a testing set(20 percent) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=1) print ("\nTesting Dataset Shape:", X_train.shape, y_train.shape) # Standarize the features scaler = StandardScaler().fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # Plot the dataset # Set the figure size plt.figure(figsize=(7.16, 3.50)) plt.subplots_adjust(bottom=0.05, top=0.9, left=0.05, right=0.95) plt.title('Training instances', size ='18') colors = ['orange', 'green', 'cyan'] for i in range(len(colors)): px = X_train[:, 0][y_train == i] py = X_train[:, 1][y_train == i] plt.scatter(px, py, c=colors[i]) plt.legend(iris.target_names) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() # create the linear model SGDclassifier from sklearn.linear_model import SGDClassifier linear_clf = SGDClassifier() # Train the classifier using fit() function linear_clf.fit(X_train, y_train) # Print the learned coeficients print ("\nThe coefficients of the linear boundary are:", linear_clf.coef_) print ("\nThe point of intersection of the line are:",linear_clf.intercept_) # Evaluate the result from sklearn import metrics y_train_pred = linear_clf.predict(X_train) print ("\nThe Accuracy of our classifier is:", metrics.accuracy_score(y_train, y_train_pred)*100)
Es wird die folgende Ausgabe erzeugt
Original Dataset Shape: (150, 4) (150,) Testing Dataset Shape: (120, 2) (120,) The coefficients of the linear boundary are: [[-28.85486061 13.42772422] [ 2.54806641 -5.04803702] [ 7.03088805 -0.73391906]] The point of intersection of the line are: [-19.61738307 -3.54055412 -0.35387805]
Die Genauigkeit unseres Klassifikators: 76,66666666666667
Das obige ist der detaillierte Inhalt vonWie implementiert man eine lineare Klassifizierung mit Python Scikit-learn?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!