suchen
HeimBackend-EntwicklungGolangSo verwenden Sie den Kontext in Go, um die automatische Aktualisierung des Anforderungsergebnis-Cache zu implementieren

So verwenden Sie den Kontext in Go, um die automatische Aktualisierung des Anforderungsergebnis-Cache zu implementieren

Zusammenfassung:
Um bei der Entwicklung von Webanwendungen die Benutzererfahrung zu verbessern, müssen wir manchmal die Ergebnisse einiger Anforderungen zwischenspeichern, um den Zugriff auf die Datenbank oder andere zu reduzieren Dienstleistungen. Allerdings stellt die Gültigkeitsdauer zwischengespeicherter Daten ein Problem dar. Ein abgelaufener Cache kann dazu führen, dass Benutzer abgelaufene Daten erhalten, was zu fehlerhaften Anzeigen und Vorgängen führt. In diesem Artikel erfahren Sie, wie Sie das Kontextpaket von Go verwenden, um die automatische Aktualisierungsfunktion des Anforderungsergebniscaches zu implementieren und so die Aktualität der zwischengespeicherten Daten sicherzustellen.

  1. Was ist das Kontextpaket? Die Go-Sprache bietet ein Kontextpaket als Werkzeug zum Übertragen von Kontextinformationen zwischen Coroutinen. Der Context-Typ im Kontextpaket stellt einige Methoden und Eigenschaften zum Steuern und Abbrechen der Ausführung von Coroutinen bereit. Bei der Verarbeitung von Webanfragen können wir die Kontextinformationen der Anfrage über das Kontextpaket weiterleiten und die Ausführung einiger verwandter Vorgänge steuern.
  2. Implementieren des Anforderungsergebnis-Cachings
  3. Zunächst müssen wir eine Cache-Struktur definieren, um die Anforderungsergebnisse und deren Ablaufzeit zu speichern. Der Code lautet wie folgt:
  4. type CacheItem struct {
        result      interface{}
        expireAt    time.Time
    }
    
    type Cache struct {
        cacheMap    map[string]CacheItem
        mutex       sync.RWMutex
    }
Im obigen Code verwenden wir eine Karte zum Speichern von Cache-Elementen, wobei der Schlüssel die eindeutige Kennung für die Anforderung und der Wert die Details des Cache-Elements (z. B. Ergebnis und Ablauf) sind Zeit). Um die Sicherheit der Parallelität zu gewährleisten, verwenden wir eine Mutex-Sperre.

Als nächstes müssen wir eine Funktion schreiben, um die Cache-Daten abzurufen. Diese Funktion prüft zunächst, ob das Anforderungsergebnis im Cache vorhanden ist und stellt fest, ob es abgelaufen ist. Wenn das zwischengespeicherte Ergebnis vorhanden ist und nicht abgelaufen ist, werden die zwischengespeicherten Daten direkt zurückgegeben. Andernfalls müssen wir die eigentliche Anfrage stellen und das Ergebnis zwischenspeichern. Der Code lautet wie folgt:

func (c *Cache) Get(key string) interface{} {
    c.mutex.RLock()
    defer c.mutex.RUnlock()

    item, ok := c.cacheMap[key]
    if ok && item.expireAt.After(time.Now()) {
        return item.result
    }

    // 发起请求并更新缓存
    result := makeRequest(key)
    c.cacheMap[key] = CacheItem{result: result, expireAt: time.Now().Add(time.Minute)}

    return result
}

Im obigen Code verwenden wir Lesesperren, um Cache-Elemente zu lesen und die Sicherheit der Parallelität zu gewährleisten. Wenn das Cache-Element existiert und nicht abgelaufen ist, wird das Cache-Ergebnis direkt zurückgegeben; andernfalls initiieren wir eine tatsächliche Anfrage und speichern das Anfrageergebnis im Cache.

    Cache aktualisieren
  1. Um die Aktualität der zwischengespeicherten Daten sicherzustellen, müssen wir den Cache regelmäßig aktualisieren. In Go können wir die WithDeadline-Funktion des Kontextpakets verwenden, um eine Frist festzulegen und den entsprechenden Vorgang nach Ablauf des Timeouts automatisch abzubrechen. Mit dieser Funktion können wir den Cache automatisch aktualisieren. Der Code lautet wie folgt:
  2. func (c *Cache) RefreshCache(ctx context.Context, key string) {
        ticker := time.NewTicker(time.Minute)
        defer ticker.Stop()
    
        for {
            select {
            case <-ticker.C:
                result := makeRequest(key)
                c.mutex.Lock()
                c.cacheMap[key] = CacheItem{result: result, expireAt: time.Now().Add(time.Minute)}
                c.mutex.Unlock()
            case <-ctx.Done():
                return
            }
        }
    }
Im obigen Code verwenden wir ein Ticker-Objekt, um regelmäßig die makeRequest-Funktion aufzurufen, um den Cache zu aktualisieren. Gleichzeitig verwenden wir die select-Anweisung, um das Kontextaufhebungssignal zum Beenden abzuhören die Aktualisierungsschleife, nachdem der Kontext abgebrochen wurde.

    Anwendungsbeispiel
  1. Als nächstes werden wir eine einfache Webanwendung verwenden, um zu demonstrieren, wie die obige Cache-Implementierung verwendet wird. Der Code lautet wie folgt:
  2. package main
    
    import (
        "context"
        "fmt"
        "net/http"
        "sync"
        "time"
    )
    
    type CacheItem struct {
        result   interface{}
        expireAt time.Time
    }
    
    type Cache struct {
        cacheMap map[string]CacheItem
        mutex    sync.RWMutex
    }
    
    func makeRequest(key string) interface{} {
        // 模拟请求耗时
        time.Sleep(time.Second)
        return fmt.Sprintf("result for %s", key)
    }
    
    func (c *Cache) Get(key string) interface{} {
        c.mutex.RLock()
        defer c.mutex.RUnlock()
    
        item, ok := c.cacheMap[key]
        if ok && item.expireAt.After(time.Now()) {
            return item.result
        }
    
        result := makeRequest(key)
        c.cacheMap[key] = CacheItem{result: result, expireAt: time.Now().Add(time.Minute)}
    
        return result
    }
    
    func (c *Cache) RefreshCache(ctx context.Context, key string) {
        ticker := time.NewTicker(time.Minute)
        defer ticker.Stop()
    
        for {
            select {
            case <-ticker.C:
                result := makeRequest(key)
                c.mutex.Lock()
                c.cacheMap[key] = CacheItem{result: result, expireAt: time.Now().Add(time.Minute)}
                c.mutex.Unlock()
            case <-ctx.Done():
                return
            }
        }
    }
    
    func main() {
        cache := &Cache{cacheMap: make(map[string]CacheItem)}
    
        http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
            ctx, cancel := context.WithDeadline(context.Background(), time.Now().Add(time.Second*5))
            defer cancel()
    
            key := r.URL.Path
    
            result := cache.Get(key)
            fmt.Fprintf(w, "%s: %s", key, result)
    
            // 启动刷新缓存的协程
            go cache.RefreshCache(ctx, key)
        })
    
        http.ListenAndServe(":8080", nil)
    }
Im obigen Beispielcode definieren wir einen einfachen HTTP-Server. Wenn eine Anfrage empfangen wird, wird die zwischengespeicherte Get-Methode aufgerufen, um die Daten abzurufen, und an den Client zurückgegeben. Gleichzeitig erstellen wir mit dem Kontextpaket einen Kontext mit einer Frist von 5 Sekunden und übergeben ihn an die RefreshCache-Methode, um die Aktualisierungszeit des Caches zu steuern.

Fazit:

In diesem Artikel wird erläutert, wie Sie das Kontextpaket von Go verwenden, um die automatische Aktualisierungsfunktion des Anforderungsergebniscaches zu implementieren. Durch die Verwendung von Cache-Strukturen und Mutexes zur Gewährleistung der Parallelitätssicherheit und die Verwendung der Funktionen des Kontextpakets zur regelmäßigen Aktualisierung des Caches können wir die Anforderungsergebnisse einfach zwischenspeichern und die Aktualität der Daten sicherstellen. Der obige Beispielcode ist nur eine einfache Demonstration. Die tatsächliche Verwendung erfordert möglicherweise entsprechende Änderungen und Optimierungen basierend auf spezifischen Anforderungen.

Das obige ist der detaillierte Inhalt vonSo verwenden Sie den Kontext in Go, um die automatische Aktualisierung des Anforderungsergebnis-Cache zu implementieren. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Golang und Python: Verständnis der UnterschiedeGolang und Python: Verständnis der UnterschiedeApr 18, 2025 am 12:21 AM

Die Hauptunterschiede zwischen Golang und Python sind Parallelitätsmodelle, Typsysteme, Leistung und Ausführungsgeschwindigkeit. 1. Golang verwendet das CSP -Modell, das für hohe gleichzeitige Aufgaben geeignet ist. Python verlässt sich auf Multi-Threading und Gil, was für I/O-intensive Aufgaben geeignet ist. 2. Golang ist ein statischer Typ und Python ist ein dynamischer Typ. 3.. Golang kompilierte Sprachausführungsgeschwindigkeit ist schnell und Python interpretierte die Sprachentwicklung schnell.

Golang gegen C: Bewertung des GeschwindigkeitsunterschiedsGolang gegen C: Bewertung des GeschwindigkeitsunterschiedsApr 18, 2025 am 12:20 AM

Golang ist in der Regel langsamer als C, aber Golang hat mehr Vorteile für die gleichzeitige Programmier- und Entwicklungseffizienz: 1) Golangs Müllsammlung und Parallelitätsmodell macht es in hohen Parallelitätsszenarien gut ab. 2) C erhält eine höhere Leistung durch das manuelle Speichermanagement und die Hardwareoptimierung, weist jedoch eine höhere Komplexität der Entwicklung auf.

Golang: Eine Schlüsselsprache für Cloud Computing und DevOpsGolang: Eine Schlüsselsprache für Cloud Computing und DevOpsApr 18, 2025 am 12:18 AM

Golang wird häufig in Cloud -Computing und DevOps verwendet, und seine Vorteile liegen in Einfachheit, Effizienz und gleichzeitigen Programmierfunktionen. 1) Beim Cloud Computing behandelt Golang effizient gleichzeitige Anforderungen über Goroutine- und Kanalmechanismen. 2) In DevOps machen Golangs schnelle Zusammenstellung und plattformübergreifende Funktionen die erste Wahl für Automatisierungswerkzeuge.

Golang und C: Ausführungseffizienz verstehenGolang und C: Ausführungseffizienz verstehenApr 18, 2025 am 12:16 AM

Golang und C haben jeweils ihre eigenen Vorteile bei der Leistungseffizienz. 1) Golang verbessert die Effizienz durch Goroutine- und Müllsammlung, kann jedoch eine Pause einführen. 2) C realisiert eine hohe Leistung durch das manuelle Speicherverwaltung und -optimierung, aber Entwickler müssen sich mit Speicherlecks und anderen Problemen befassen. Bei der Auswahl müssen Sie Projektanforderungen und Teamtechnologie -Stack in Betracht ziehen.

Golang vs. Python: Parallelität und MultithreadingGolang vs. Python: Parallelität und MultithreadingApr 17, 2025 am 12:20 AM

Golang eignet sich besser für hohe Parallelitätsaufgaben, während Python mehr Vorteile bei der Flexibilität hat. 1. Golang behandelt die Parallelität effizient über Goroutine und Kanal. 2. Python stützt sich auf Threading und Asyncio, das von GIL betroffen ist, jedoch mehrere Parallelitätsmethoden liefert. Die Wahl sollte auf bestimmten Bedürfnissen beruhen.

Golang und C: Die Kompromisse bei der LeistungGolang und C: Die Kompromisse bei der LeistungApr 17, 2025 am 12:18 AM

Die Leistungsunterschiede zwischen Golang und C spiegeln sich hauptsächlich in der Speicherverwaltung, der Kompilierungsoptimierung und der Laufzeiteffizienz wider. 1) Golangs Müllsammlung Mechanismus ist praktisch, kann jedoch die Leistung beeinflussen.

Golang vs. Python: Anwendungen und AnwendungsfälleGolang vs. Python: Anwendungen und AnwendungsfälleApr 17, 2025 am 12:17 AM

Wählen SieGolangforHighperformanceConcurcurrency, idealforbackendServicesandNetworkProgramming; selectPythonforrapidDevelopment, DataScience und MachinelearningDuEToSverseStilityAntenSiveselibrary.

Golang gegen Python: Schlüsselunterschiede und ÄhnlichkeitenGolang gegen Python: Schlüsselunterschiede und ÄhnlichkeitenApr 17, 2025 am 12:15 AM

Golang und Python haben jeweils ihre eigenen Vorteile: Golang ist für hohe Leistung und gleichzeitige Programmierung geeignet, während Python für Datenwissenschaft und Webentwicklung geeignet ist. Golang ist bekannt für sein Parallelitätsmodell und seine effiziente Leistung, während Python für sein Ökosystem für die kurze Syntax und sein reiches Bibliothek bekannt ist.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Crossplay haben?
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.