suchen
HeimBackend-EntwicklungPython-TutorialWie bereinigt und verarbeitet Scrapy Crawler-Daten?

Crawler-Datenverarbeitung ist ein entscheidender Schritt in Datenerfassungsanwendungen. Scrapy ist ein beliebtes Python-Crawler-Framework, das uns dabei helfen kann, die erforderlichen Informationen schnell und effizient aus Webseiten zu extrahieren. Ein Problem, mit dem wir jedoch häufig konfrontiert sind, ist die schlechte Qualität der Daten mit verschiedenen Störungen und Fehlern, was ihre Verwendung für spätere Analysen und Entscheidungen erschwert. Daher müssen Crawler-Daten bereinigt und vorverarbeitet werden, bevor Aufgaben wie Data Mining und maschinelles Lernen ausgeführt werden. In diesem Artikel wird vorgestellt, wie Scrapy Crawler-Daten bereinigt und verarbeitet.

  1. Datenbereinigung

Datenbereinigung bezieht sich auf das Entfernen von Fehlern, unvollständigen oder nutzlosen Daten in der Datenverarbeitungsphase, um die Daten standardisierter und zuverlässiger zu machen. Im Folgenden sind einige gängige Datenbereinigungstechniken aufgeführt:

1) Doppelte Werte entfernen: Scrapy kann doppelte Daten erkennen und löschen. Verwenden Sie dazu einen einfachen Befehl wie folgt:

from scrapy.utils import dupefilter
from scrapy.dupefilters import RFPDupeFilter

dupefilter.RFPDupeFilter.from_settings(settings)

2) Fehlende Werte ergänzen: Scrapy kann die Methode fillna() verwenden um die fehlenden Werte einzugeben. Ersetzen Sie beispielsweise fehlende Werte durch den Mittelwert oder Median der Daten:

df.fillna(df.mean())
df.fillna(df.median())

3) Ausreißererkennung und -ausschluss: Scrapy kann die Z-Score-Methode verwenden, um Ausreißer zu erkennen und auszuschließen. Der Z-Score ist eine Standardisierungsmethode, die die Streuung von Beobachtungen misst, indem sie die Differenz zwischen jeder Beobachtung und ihrem Stichprobenmittel berechnet. Beobachtungen mit einem Z-Score über 3 können als Ausreißer betrachtet werden und sollten ausgeschlossen werden.

df[df.Zscore < 3]
  1. Datenkonvertierung

Datenkonvertierung bezieht sich auf die Konvertierung von Daten von einer Form in eine andere, um die Anforderungen einer bestimmten Aufgabe zu erfüllen. Hier sind einige gängige Datentransformationstechniken:

1) Normalisierung: Scrapy kann die Min-Max-Methode verwenden, um Datenwerte in einen Bereich zwischen 0 und 1 umzuwandeln. Mit dieser Transformation können Datenwerte in verschiedenen Bereichen verglichen und vereinheitlicht werden.

df_norm = (df - df.min()) / (df.max() - df.min())

2) Standardisierung: Scrapy kann die Z-Score-Methode verwenden, um Daten in eine Verteilung mit einem Mittelwert von 0 und einer Standardabweichung von 1 umzuwandeln. Diese Transformation kann verwendet werden, um Datenwerte unterschiedlicher Skalen und Einheiten auf derselben Skala zu vereinheitlichen.

df_stand = (df - df.mean()) / df.std()

3) Diskretisierung: Scrapy kann die Methode Pandas.cut() verwenden, um kontinuierliche Datenwerte in mehrere Intervallwerte zu diskretisieren. Diese Transformation kann verwendet werden, um kontinuierliche numerische Variablen in kategoriale Variablen umzuwandeln.

df['bins'] = pd.cut(df['formattime'], bins=[0,4,8,12,16,20,24], labels=['0-4', '4-8', '8-12', '12-16', '16-20', '20-24'])
  1. Datenintegration

Datenintegration bezieht sich auf die Kombination von Datensätzen aus verschiedenen Quellen und Formaten in einem Datensatz zur Analyse und Anwendung. Im Folgenden sind einige gängige Datenintegrationstechniken aufgeführt:

1) Zusammenführen: Scrapy kann die Methode Pandas.merge() verwenden, um zwei Datensätze mit denselben oder unterschiedlichen Spalten in einem Datensatz zusammenzuführen. Durch diese Zusammenführung können Datensätze aus unterschiedlichen Zeiträumen und Orten zu einem großen Datensatz zusammengefasst werden.

df_merge = pd.merge(df1, df2, on='id')

2) Verkettung: Scrapy kann die Methode Pandas.concat() verwenden, um zwei Datensätze mit gleichen oder unterschiedlichen Indizes zu einem Datensatz zu verketten. Diese Verbindung kann verwendet werden, um Datensätze aus demselben Zeitraum und demselben Standort zusammenzuführen.

df_concat=pd.concat([df1,df2])

3) Stapeln: Scrapy kann die Methode Pandas.stack() verwenden, um einen Satz von Spaltenwerten in einen Satz von Zeilenwerten umzuwandeln. Diese Transformation kann verwendet werden, um einen Datensatz vom Breitformat in das Langformat zu konvertieren.

df_stacked = df.stack()

Zusammenfassend lässt sich sagen, dass Scrapy ein leistungsstarkes Crawler-Framework ist, das ein hohes Maß an Freiheit und Flexibilität bei der Datenbereinigung und -verarbeitung bietet. Verschiedene Methoden, die Scrapy- und Pandas-Bibliotheken verwenden, können uns dabei helfen, rohe Crawler-Daten effektiv zu bereinigen und zu verarbeiten und so die Datenqualität und -zuverlässigkeit zu verbessern.

Das obige ist der detaillierte Inhalt vonWie bereinigt und verarbeitet Scrapy Crawler-Daten?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python vs. C: Lernkurven und BenutzerfreundlichkeitPython vs. C: Lernkurven und BenutzerfreundlichkeitApr 19, 2025 am 12:20 AM

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python vs. C: Speicherverwaltung und KontrollePython vs. C: Speicherverwaltung und KontrolleApr 19, 2025 am 12:17 AM

Python und C haben signifikante Unterschiede in der Speicherverwaltung und -kontrolle. 1. Python verwendet die automatische Speicherverwaltung, basierend auf der Referenzzählung und der Müllsammlung, um die Arbeit von Programmierern zu vereinfachen. 2.C erfordert eine manuelle Speicherverwaltung und liefert mehr Kontrolle, aber die Komplexität und das Fehlerrisiko. Welche Sprache zu wählen sollte, sollte auf Projektanforderungen und Teamtechnologie -Stack basieren.

Python für wissenschaftliches Computer: Ein detailliertes AussehenPython für wissenschaftliches Computer: Ein detailliertes AussehenApr 19, 2025 am 12:15 AM

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Python und C: Das richtige Werkzeug findenPython und C: Das richtige Werkzeug findenApr 19, 2025 am 12:04 AM

Ob die Auswahl von Python oder C von den Projektanforderungen abhängt: 1) Python eignet sich aufgrund seiner prägnanten Syntax und reichhaltigen Bibliotheken für schnelle Entwicklung, Datenwissenschaft und Skripten; 2) C ist für Szenarien geeignet, die aufgrund seiner Zusammenstellung und des manuellen Speichermanagements eine hohe Leistung und die zugrunde liegende Kontrolle erfordern, wie z. B. Systemprogrammierung und Spielentwicklung.

Python für Datenwissenschaft und maschinelles LernenPython für Datenwissenschaft und maschinelles LernenApr 19, 2025 am 12:02 AM

Python wird in Datenwissenschaft und maschinellem Lernen häufig verwendet, wobei hauptsächlich auf seine Einfachheit und ein leistungsstarkes Bibliotheksökosystem beruhen. 1) Pandas wird zur Datenverarbeitung und -analyse verwendet, 2) Numpy liefert effiziente numerische Berechnungen, und 3) Scikit-Learn wird für die Konstruktion und Optimierung des maschinellen Lernens verwendet. Diese Bibliotheken machen Python zu einem idealen Werkzeug für Datenwissenschaft und maschinelles Lernen.

Python lernen: Ist 2 Stunden tägliches Studium ausreichend?Python lernen: Ist 2 Stunden tägliches Studium ausreichend?Apr 18, 2025 am 12:22 AM

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Python für die Webentwicklung: SchlüsselanwendungenPython für die Webentwicklung: SchlüsselanwendungenApr 18, 2025 am 12:20 AM

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python vs. C: Erforschung von Leistung und Effizienz erforschenPython vs. C: Erforschung von Leistung und Effizienz erforschenApr 18, 2025 am 12:20 AM

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool