Python ist eine weit verbreitete Programmiersprache, die in der Bildverarbeitung und Bildverarbeitung sehr beliebt ist. In diesem Artikel werden wir Beispiele für die Bildklassifizierung in Python untersuchen. Die Bildklassifizierung ist eine grundlegende Aufgabe in der Computer Vision, bei der es um die Identifizierung von Objekten oder Szenen in Bildern geht. In diesem Artikel wird erläutert, wie Sie das Deep-Learning-Framework Keras in Python verwenden, um das Training und die Vorhersage von Bildklassifizierungsmodellen zu implementieren.
Vorbereitung
Bevor wir die Bildklassifizierung durchführen, müssen wir die erforderlichen Softwarepakete installieren. Nachfolgend finden Sie die Liste der erforderlichen Pakete:
- Python 3. Führen Sie den folgenden Befehl in der Befehlszeile aus, um die erforderlichen Pakete zu installieren:
pip install keras pip install tensorflow pip install numpy pip install Pillow
from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data()Modell erstellenBevor wir das Bildklassifizierungsmodell erstellen, müssen wir die Architektur des Modells definieren. In diesem Beispiel verwenden wir ein Convolutional Neural Network (CNN)-Modell. Das CNN-Modell ist ein Deep-Learning-Modell, das bei der Bildklassifizierung gute Leistungen erbringt. Keras bietet eine einfache Möglichkeit, CNN-Modelle zu erstellen. Das Folgende ist der Code für ein CNN-Beispielmodell:
from keras import layers from keras import models model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10, activation='softmax')) model.summary()Im obigen Code definieren wir ein CNN-Modell, das zwei Faltungsschichten und zwei Max-Pooling-Schichten enthält. Das Modell umfasst außerdem zwei dichte Schichten, die jeweils die ReLU-Aktivierungsfunktion verwenden. Trainieren Sie das ModellNachdem wir das Modell definiert haben, müssen wir das Modell trainieren. Während des Trainings lernt das Modell, Eingabebilder den richtigen numerischen Kategorien zuzuordnen. In Keras kann der folgende Code zum Kompilieren und Trainieren des Modells verwendet werden:
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) train_images = train_images.reshape((60000, 28, 28, 1)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28, 28, 1)) test_images = test_images.astype('float32') / 255 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) model.fit(train_images, train_labels, epochs=5, batch_size=64)Im obigen Code verarbeiten wir zunächst das Bild vor und kompilieren dann das Modell mit dem Optimierer als „rmsprop“ und der Verlustfunktion als Cross- Entropiemodell. Anschließend verwenden wir die Trainingsbilder und Beschriftungen, um das Modell zu trainieren. Am Ende jeder Epoche testen wir das Modell anhand von Testbildern und Beschriftungen. Testen Sie das ModellNach Abschluss des Modelltrainings können wir den Testdatensatz verwenden, um die Genauigkeit des Modells zu testen. Das Modell kann mit dem folgenden Code getestet werden:
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('test_acc:', test_acc)
Als nächstes können wir mit dem folgenden Code Vorhersagen treffen: predictions = model.predict(test_images) import numpy as np print(np.argmax(predictions[0]))Im obigen Code sagen wir das erste Bild des Testbildsatzes voraus und verwenden dann Numpy, um das Maximum zu finden Indexwert und drucken Sie die Vorhersageergebnisse aus. FazitIn diesem Artikel haben wir vorgestellt, wie man das Deep-Learning-Framework Keras in Python verwendet, um das Training und die Vorhersage von Bildklassifizierungsmodellen zu implementieren. Wir verwenden den MNIST-Datensatz zum Testen und das CNN-Modell zum Training. Abschließend testen wir die Genauigkeit des Modells, indem wir anhand eines Testbildsatzes Vorhersagen treffen. Dieses Beispiel kann als Einführungsbeispiel für Deep Learning und Computer Vision verwendet werden, damit Anfänger verstehen, wie Python zum Implementieren von Bildklassifizierungsaufgaben verwendet wird.
Das obige ist der detaillierte Inhalt vonBeispiel für die Bildklassifizierung in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

Dreamweaver CS6
Visuelle Webentwicklungstools

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.