Heim >Backend-Entwicklung >Python-Tutorial >Wie Python-Objekte aufgerufen werden

Wie Python-Objekte aufgerufen werden

WBOY
WBOYnach vorne
2023-05-31 11:39:111098Durchsuche

Wedge

Wir haben gelernt, dass es im Wesentlichen zwei Möglichkeiten gibt, Objekte zu erstellen: eine über die Python/C-API und die andere über den Aufruf eines Typobjekts. Bei Objekten integrierter Typen werden beispielsweise beide Methoden unterstützt. Listen können beispielsweise über [] oder list() erstellt werden. Ersteres ist eine Python/C-API und letzteres ist ein aufrufendes Typobjekt.

Das Erstellen eines Instanzobjekts einer benutzerdefinierten Klasse kann nur durch Aufrufen des Typobjekts der Klasse erfolgen. Ein Objekt ist aufrufbar, wenn es aufgerufen werden kann, andernfalls ist es nicht aufrufbar.

Ob ein Objekt aufrufbar ist, hängt davon ab, ob sein entsprechendes Typobjekt bestimmte Methoden definiert. Aus Python-Sicht ist diese Methode __call__ und aus Interpreter-Perspektive ist diese Methode tp_call.

Betrachtung von Objektaufrufen aus einer Python-Perspektive

Mit Aufrufen von int, str, tuple können Ganzzahlen, Zeichenfolgen und Tupel erstellt werden. Durch Aufrufen einer benutzerdefinierten Klasse können auch entsprechende Instanzobjekte erstellt werden, was darauf hinweist, dass Typobjekte Callable sein können , abrufbar. Dann muss innerhalb des Typobjekts (Typ) dieser Typobjekte (int, str, tuple, class usw.) eine __call__-Methode vorhanden sein.

# int可以调用
# 那么它的类型对象、也就是元类(type), 内部一定有__call__方法
print(hasattr(type, "__call__"))# True
# 而调用一个对象,等价于调用其类型对象的 __call__ 方法
# 所以 int(3.14)实际就等价于如下
print(type.__call__(int, 3.14))# 3

Hinweis: Die Beschreibung hier kann etwas verwirrend sein. Wir sagen, dass int, str und float alle Typobjekte sind (einfach gesagt Klassen) und 123, „Hallo“ und 3.14 ihre entsprechenden Instanzobjekte sind Kein Problem. Aber ist Typ ein Typobjekt? Offensichtlich ja, obwohl wir es eine Metaklasse nennen, ist es auch ein Typobjekt. Wenn print(type) eine Klasse anzeigt, ist es auch ein Typobjekt.

Sind int, str und float im Vergleich zum Typ wieder zu Instanzobjekten? Denn ihr Typ ist Typ.

Klasse hat also Dualität:

  • Wenn Sie aus der Perspektive von Instanzobjekten stehen (z. B.: 123, „satori“, [], 3.14), handelt es sich um ein Typobjekt

  • Wenn Sie stehen aus der Perspektive des Typs Aus der Perspektive des Typs handelt es sich um ein Instanzobjekt . Obwohl die Beschreibung etwas kompliziert ist, sollte sie nicht schwer zu verstehen sein. Um Unklarheiten in nachfolgenden Beschreibungen zu vermeiden, wird hier eine Aussage getroffen:

Ganzzahlen, Gleitkommazahlen, Zeichenfolgen usw., wir nennen sie Instanzobjekte

  • int, float, str, dict und unsere eigenen Die definierte Klasse wird als Typobjekt bezeichnet. Obwohl es sich auch um ein Typobjekt handelt, nennen wir sie eine Metaklasse. Es gibt also eine __call__-Methode innerhalb des Typs, was bedeutet, dass alle Typobjekte aufrufbar sind Ja, denn der Aufruf eines Typobjekts ruft die __call__-Methode des Typs auf. Ob das Instanzobjekt aufgerufen werden kann, hängt nicht unbedingt davon ab, ob die Methode __call__ in seinem Typobjekt definiert ist, da der Aufruf eines Objekts im Wesentlichen die Methode __call__ innerhalb seines Typobjekts ausführt.

    class A:
     pass
    a = A()
    # 因为我们自定义的类 A 里面没有 __call__
    # 所以 a 是不可以被调用的
    try:
     a()
    except Exception as e:
     # 告诉我们 A 的实例对象不可以被调用
     print(e)# 'A' object is not callable
    # 如果我们给 A 设置了一个 __call__
    type.__setattr__(A, "__call__", lambda self: "这是__call__")
    # 发现可以调用了
    print(a())# 这是__call__

    Wir sehen, dass dies das Merkmal dynamischer Sprachen ist. Auch nachdem die Klasse erstellt wurde, kann sie noch dynamisch über den Typ festgelegt werden, was in statischen Sprachen nicht unterstützt wird. Type ist also die Metaklasse aller Klassen, die den Generierungsprozess unserer benutzerdefinierten Klassen steuert. Type, eine alte und leistungsstarke Klasse, ermöglicht es uns, viele neue Tricks zu spielen.
  • Da integrierte Klassen statisch auf der untersten Ebene definiert werden, können Sie den Typ nicht zum dynamischen Hinzufügen, Löschen oder Ändern von Eigenschaften verwenden. Weil wir dem Quellcode entnehmen können, dass diese integrierten Klassen, einschließlich Metaklassen, alle PyTypeObject-Objekte sind und auf der untersten Ebene als globale Variablen deklariert wurden oder bereits als statische Klassen vorhanden sind. Obwohl der Typ die Metaklasse aller Objekttypen ist, kann er nur hinzugefügt, gelöscht und geändert werden, wenn es sich um unsere benutzerdefinierten Klassen handelt.

  • Und wir haben auch erklärt, dass die dynamische Natur von Python dynamisch zugewiesen wird, wenn der Interpreter Bytecode in C-Code übersetzt. Daher gilt das dynamische Festlegen von Attributen oder Methoden für eine Klasse nur für dynamische Klassen, also für py-Dateien wird mit dem Schlüsselwort class definiert.

  • Bei statischen Klassen oder Erweiterungsklassen, die beim Schreiben von Erweiterungsmodulen definiert werden (beide sind gleichwertig), verweisen sie nach der Kompilierung bereits auf Datenstrukturen auf C-Ebene und müssen nicht vom Interpreter interpretiert werden. Daher kann der Interpreter natürlich keine Manipulationen vornehmen Mit ihnen bedarf ein starkes Leben schließlich keiner Erklärung.

    try:
     type.__setattr__(dict, "__call__", lambda self: "这是__call__")
    except Exception as e:
     print(e)# can't set attributes of built-in/extension type 'dict'
  • Wir haben gesehen, dass eine Ausnahme ausgelöst wurde, die uns darauf hinwies, dass wir keine Attribute für das integrierte/erweiterte Typ-Dikt festlegen können, da diese den Interpretations- und Ausführungsschritt des Interpreters umgehen und ihre Attribute daher nicht dynamisch festgelegt werden können.

Das Gleiche gilt für Instanzobjekte statischer Klassen, die keine Attribute dynamisch festlegen können:

class Girl:
 pass
g = Girl()
g.name = "古明地觉"
# 实例对象我们也可以手动设置属性
print(g.name)# 古明地觉
lst = list()
try:
 lst.name = "古明地觉"
except Exception as e:
 # 但是内置类型的实例对象是不可以的
 print(e)# 'list' object has no attribute 'name'

Manche Leute fragen sich vielleicht, warum Listen nicht möglich sind. Die Antwort ist, dass das Instanzobjekt des integrierten Typs kein __dict__-Attributwörterbuch hat, da die relevanten Attribute oder Methoden unten definiert wurden und nicht dynamisch hinzugefügt werden können. Wenn wir das Attribut __slots__ für eine benutzerdefinierte Klasse festlegen, hat dies denselben Effekt wie die integrierte Klasse.


Natürlich werden wir später vorstellen, wie man dies durch dynamisches Ändern des Interpreters ändert. Bedeutet das nicht, dass statische Klassen keine Eigenschaften dynamisch festlegen können? Jetzt werde ich mir selbst eine Ohrfeige geben:

import gc
try:
 type.__setattr__(list, "ping", "pong")
except TypeError as e:
 print(e)# can't set attributes of built-in/extension type 'list'
# 我们看到无法设置,那么我们就来改变这一点
attrs = gc.get_referents(tuple.__dict__)[0]
attrs["ping"] = "pong"
print(().ping)# pong
attrs["append"] = lambda self, item: self + (item,)
print(
 ().append(1).append(2).append(3)
)# (1, 2, 3)

我脸肿了。好吧,其实这只是我们玩的一个小把戏,当我们介绍完整个 CPython 的时候,会来专门聊一聊如何动态修改解释器。比如:让元组变得可修改,让 Python 真正利用多核等等。

从解释器的角度看对象的调用

我们以内置类型 float 为例,我们说创建一个 PyFloatObject,可以通过3.14或者float(3.14)的方式。前者使用Python/C API创建,3.14直接被解析为 C 一级数据结构,也就是PyFloatObject实例;后者使用类型对象创建,通过对float进行一个调用、将3.14作为参数,最终也得到指向C一级数据结构PyFloatObject实例。

Python/C API的创建方式我们已经很清晰了,就是根据值来推断在底层应该对应哪一种数据结构,然后直接创建即可。我们重点看一下通过类型调用来创建实例对象的方式。

如果一个对象可以被调用,它的类型对象中一定要有tp_call(更准确的说成员tp_call的值是一个函数指针,不可以是0),而PyFloat_Type是可以调用的,这就说明PyType_Type内部的tp_call是一个函数指针,这在Python的层面上我们已经验证过了,下面我们再来通过源码看一下。

//typeobject.c
PyTypeObject PyType_Type = {
 PyVarObject_HEAD_INIT(&PyType_Type, 0)
 "type", /* tp_name */
 sizeof(PyHeapTypeObject), /* tp_basicsize */
 sizeof(PyMemberDef),/* tp_itemsize */
 (destructor)type_dealloc, /* tp_dealloc */
 //... /* tp_hash */
 (ternaryfunc)type_call, /* tp_call */
 //...
}

我们看到在实例化PyType_Type的时候PyTypeObject内部的成员tp_call被设置成了type_call。当 PyFloat_Type 被调用时, type_call 指向的函数将会被触发,因为它是一个函数指针。

因此 float(3.14) 在C的层面上等价于:

(&PyFloat_Type) -> ob_type -> tp_call(&PyFloat_Type, args, kwargs);
// 即:
(&PyType_Type) -> tp_call(&PyFloat_Type, args, kwargs);
// 而在创建 PyType_Type 的时候,给 tp_call 成员传递的是 type_call
// 因此最终相当于
type_call(&PyFloat_Type, args, kwargs)

如果用 Python 来演示这一过程的话:

# float(3.14),等价于
f1 = float.__class__.__call__(float, 3.14)
# 等价于
f2 = type.__call__(float, 3.14)
print(f1, f2)# 3.14 3.14

这就是 float(3.14) 的秘密,相信list、dict在实例化的时候是怎么做的,你已经猜到了,做法是相同的。

# lst = list("abcd")
lst = list.__class__.__call__(list, "abcd")
print(lst)# ['a', 'b', 'c', 'd']
# dct = dict([("name", "古明地觉"), ("age", 17)])
dct = dict.__class__.__call__(dict, [("name", "古明地觉"), ("age", 17)])
print(dct)# {'name': '古明地觉', 'age': 17}

最后我们来围观一下 type_call 函数,我们说 type 的 __call__ 方法,在底层对应的是 type_call 函数,它位于Object/typeobject.c中。

static PyObject *
type_call(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
 // 如果我们调用的是 float
 // 那么显然这里的 type 就是 &PyFloat_Type

 // 这里是声明一个PyObject *
 // 显然它是要返回的实例对象的指针
 PyObject *obj;

 // 这里会检测 tp_new是否为空,tp_new是什么估计有人已经猜到了
 // 我们说__call__对应底层的tp_call
 // 显然__new__对应底层的tp_new,这里是为实例对象分配空间
 if (type->tp_new == NULL) {
 // tp_new 是一个函数指针,指向具体的构造函数
 // 如果 tp_new 为空,说明它没有构造函数
 // 因此会报错,表示无法创建其实例
 PyErr_Format(PyExc_TypeError,
"cannot create '%.100s' instances",
type->tp_name);
 return NULL;
 }

 //通过tp_new分配空间
 //此时实例对象就已经创建完毕了,这里会返回其指针
 obj = type->tp_new(type, args, kwds);
 //类型检测,暂时不用管
 obj = _Py_CheckFunctionResult((PyObject*)type, obj, NULL);
 if (obj == NULL)
 return NULL;
 //我们说这里的参数type是类型对象,但也可以是元类
 //元类也是由PyTypeObject结构体实例化得到的
 //元类在调用的时候执行的依旧是type_call
 //所以这里是检测type指向的是不是PyType_Type
 //如果是的话,那么实例化得到的obj就不是实例对象了,而是类型对象
 //要单独检测一下
 if (type == &PyType_Type &&
 PyTuple_Check(args) && PyTuple_GET_SIZE(args) == 1 &&
 (kwds == NULL ||
(PyDict_Check(kwds) && PyDict_GET_SIZE(kwds) == 0)))
 return obj;
 //tp_new应该返回相应类型对象的实例对象(的指针)
 //但如果不是,就直接将这里的obj返回
 //此处这么做可能有点难理解,我们一会细说
 if (!PyType_IsSubtype(Py_TYPE(obj), type))
 return obj;

 //拿到obj的类型
 type = Py_TYPE(obj);
 //执行 tp_init
 //显然这个tp_init就是__init__函数
 //这与Python中类的实例化过程是一致的。
 if (type->tp_init != NULL) {
 //将tp_new返回的对象作为self,执行 tp_init
 int res = type->tp_init(obj, args, kwds);
 if (res < 0) {
 //执行失败,将引入计数减1,然后将obj设置为NULL
 assert(PyErr_Occurred());
 Py_DECREF(obj);
 obj = NULL;
 }
 else {
 assert(!PyErr_Occurred());
 }
 }
 //返回obj
 return obj;
}

因此从上面我们可以看到关键的部分有两个:

  • 调用类型对象的 tp_new 指向的函数为实例对象申请内存

  • 调用 tp_init 指向的函数为实例对象进行初始化,也就是设置属性

所以这对应Python中的__new__和__init__,我们说__new__是为实例对象开辟一份内存,然后返回指向这片内存(对象)的指针,并且该指针会自动传递给__init__中的self。

class Girl:
 def __new__(cls, name, age):
 print("__new__方法执行啦")
 # 写法非常固定
 # 调用object.__new__(cls)就会创建Girl的实例对象
 # 因此这里的cls指的就是这里的Girl,注意:一定要返回
 # 因为__new__会将自己的返回值交给__init__中的self
 return object.__new__(cls)
 def __init__(self, name, age):
 print("__init__方法执行啦")
 self.name = name
 self.age = age
g = Girl("古明地觉", 16)
print(g.name, g.age)
"""
__new__方法执行啦
__init__方法执行啦
古明地觉 16
"""

__new__里面的参数要和__init__里面的参数保持一致,因为我们会先执行__new__,然后解释器会将__new__的返回值和我们传递的参数组合起来一起传递给__init__。一般来说,除了cls,__new__方法的参数通常包括*args和**kwargs。

然后再回过头来看一下type_call中的这几行代码:

static PyObject *
type_call(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
 //......
 //......
 if (!PyType_IsSubtype(Py_TYPE(obj), type))
 return obj;

 //......
 //......
}

一般情况下,我们认为tp_new会返回该类型的实例对象,因此通常不需要编写__new__方法。如果进行重写,就需要手动返回object.__new__(cls)。可如果我们不返回,或者返回其它的话,会怎么样呢?

class Girl:
 def __new__(cls, *args, **kwargs):
 print("__new__方法执行啦")
 instance = object.__new__(cls)
 # 打印看看instance到底是个什么东东
 print("instance:", instance)
 print("type(instance):", type(instance))

 # 正确做法是将instance返回
 # 但是我们不返回, 而是返回个 123
 return 123
 def __init__(self, name, age):
 print("__init__方法执行啦")
g = Girl()
"""
__new__方法执行啦
instance:type(instance):"""

这个句子可以重写为:“有很多需要讨论的问题,最先引起注意的是在 __init__ 中需要传入两个参数,然而我们未传入参数时并未报错。”。原因就在于这个 __init__ 压根就没有执行,因为 __new__ 返回的不是 Girl 的实例对象。

通过打印 instance,我们知道了object.__new__(cls) 返回的就是 cls 的实例对象,而这里的cls就是Girl这个类本身。如果我们不返回instance,__new__方法就会直接返回,而无法执行对应的__init__方法。我们在外部来打印一下创建的实例对象吧,看看结果:

class Girl:
 def __new__(cls, *args, **kwargs):
 return 123
 def __init__(self, name, age):
 print("__init__方法执行啦")
g = Girl()
print(g, type(g))# 123

我们看到打印的是123,所以再次总结一些tp_new和tp_init之间的区别,当然也对应__new__和__init__的区别:

  • tp_new:为该类型对象的实例对象申请内存,在Python的__new__方法中通过object.__new__(cls)的方式申请,然后将其返回

  • tp_init:tp_new的返回值会自动传递给self,然后为self绑定相应的属性,也就是进行实例对象的初始化

但如果tp_new返回的不是对应类型的实例对象的指针,比如type_call中第一个参数接收的&PyFloat_Type,但是tp_new中返回的却是PyLongObject *,所以此时就不会执行tp_init。

以上面的代码为例,我们Girl中的__new__应该返回Girl的实例对象才对,但实际上返回了整型,因此类型不一致,所以不会执行__init__。

下面我们可以做总结了,通过类型对象去创建实例对象的整体流程如下:
  • 第一步:获取类型对象的类型对象,说白了就是元类,执行元类的 tp_call 指向的函数,即 type_call

  • 第二步:type_call 会调用该类型对象的 tp_new 指向的函数,如果 tp_new 为 NULL,那么会到 tp_base 指定的父类里面去寻找 tp_new。在新式类中,所有类都继承自 object,因此最终都会调用 object 的 __new__ 方法。然后通过访问对应类型对象中的 tp_basicsize 信息,这个信息记录着该对象的实例对象需要占用多大的内存,继而完成申请内存的操作

  • 调用type_new 创建完对象之后,就会进行实例对象的初始化,会将指向这片空间的指针交给 tp_init,但前提是 tp_new 返回的实例对象的类型要一致。

所以都说 Python 在实例化的时候会先调用 __new__ 方法,再调用 __init__ 方法,相信你应该知道原因了,因为在源码中先调用 tp_new、再调用的 tp_init。

static PyObject *
type_call(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
 //调用__new__方法, 拿到其返回值
 obj = type->tp_new(type, args, kwds);
 if (type->tp_init != NULL) {
 //将__new__返回的实例obj,和args、kwds组合起来
 //一起传给 __init__
 //其中 obj 会传给 self,
 int res = type->tp_init(obj, args, kwds);
 //......
 return obj;
}

所以源码层面表现出来的,和我们在 Python 层面看到的是一样的。

Das obige ist der detaillierte Inhalt vonWie Python-Objekte aufgerufen werden. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Dieser Artikel ist reproduziert unter:yisu.com. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen