suchen
HeimTechnologie-PeripheriegeräteKITeilen der Technologie des Volcano-Engine-Tools: Verwenden Sie KI, um das Data Mining und das SQL-Schreiben ohne Schwellenwert von Null abzuschließen

火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

Beim Einsatz von BI-Tools stoßen wir häufig auf die Frage: „Wie können wir Daten erzeugen und verarbeiten, wenn wir SQL nicht kennen? Können wir Mining-Analysen durchführen, wenn wir keine Algorithmen kennen?“ Ein professionelles Algorithmenteam führt Data Mining durch. Die Datenanalyse und -visualisierung erscheint ebenfalls relativ fragmentiert. Eine optimierte Durchführung der Algorithmenmodellierungs- und Datenanalysearbeiten ist ebenfalls eine gute Möglichkeit, die Effizienz zu verbessern.

Gleichzeitig stehen für professionelle Data-Warehouse-Teams Dateninhalte mit demselben Thema vor dem Problem der „wiederholten Erstellung, relativ verstreuten Verwendung und Verwaltung“ – gibt es eine Möglichkeit, Daten mit demselben Thema und unterschiedlichen Inhalten gleichzeitig zu erstellen? gleichzeitig in einer Aufgabe? Kann der erstellte Datensatz als Eingabe für die erneute Teilnahme an der Datenkonstruktion verwendet werden?

1. Die visuelle Modellierungsfunktion von DataWind ist da

Die von der Volcano Engine eingeführte BI-Plattform DataWind für intelligente Dateneinblicke hat eine neue erweiterte funktionsvisuelle Modellierung eingeführt.

Benutzer können den komplexen Datenverarbeitungs- und Modellierungsprozess durch visuelles Ziehen, Ziehen und Verbinden in einen klaren und leicht verständlichen Canvas-Prozess vereinfachen. Alle Arten von Benutzern können die Datenproduktion und -verarbeitung gemäß der Idee abschließen ​​Was sie wollen, ist, was sie bekommen, wodurch die Datenproduktionsschwelle gesenkt wird.

Canvas unterstützt die gleichzeitige Erstellung mehrerer Canvas-Prozesse, wodurch die Effizienz der Datenkonstruktion verbessert und die Kosten für die Aufgabenverwaltung gesenkt werden können Arten von Datenbereinigungs- und Feature-Engineering-Algorithmen. Sie decken grundlegende bis erweiterte Datenproduktionsfunktionen ab und erfordern keine Codierung, um komplexe Datenfunktionen zu vervollständigen.

2. Null-Schwellen-SQL-Tools

Die Datenproduktion und -verarbeitung ist der erste Schritt zur Datenbeschaffung und -analyse.

Für technisch nicht versierte Benutzer gibt es einen bestimmten Schwellenwert für die Verwendung der SQL-Syntax. Gleichzeitig können lokale Dateien nicht regelmäßig aktualisiert werden, was dazu führt, dass das Dashboard jedes Mal manuell neu erstellt werden muss. Der für die Datenbeschaffung erforderliche technische Arbeitsaufwand muss häufig eingeplant werden, wodurch die Aktualität und Zufriedenheit der Datenerfassung erheblich verringert wird. Daher ist es besonders wichtig, Tools zur Datenkonstruktion ohne Code zu verwenden.

Im Folgenden sind zwei typische Szenarien aufgeführt, wie die nullschwellige Datenverarbeitung am Arbeitsplatz angewendet wird.

2.1 [Szenario 1] Was Sie denken, ist das, was Sie erhalten. Der Datenverarbeitungsprozess wird visuell abgeschlossen werden durch visuelle Modellierung per Drag-and-Drop-Operator konstruiert.

Wenn Sie die Anzahl der Bestellungen und die Bestellmenge nach Datum und Stadtgranularität sowie die Stadtdaten der 10 größten Tagesverbrauchsmengen erhalten möchten, ist der Vorgang wie folgt:

Allgemeiner DatenverarbeitungsprozessVisueller Modellierungsprozess

  1. Bitte rufen Sie technische Studenten die detaillierten Daten der Bestellung ab, einschließlich Bestell-ID/Bestellmenge/Benutzer-ID/Bestellung Datum Stadt usw.
  2. Stellen Sie die Daten durch die Bedienung des Perspektivdiagramms als Bestelldatum, Stadt ein und die Indikatoren sind die Summe der Bestellmengen und die Summe der Bestell-IDs #🎜🎜 #
  3. Sortieren Sie die Perspektivenergebnisse nach Menge und schreiben Sie dann die Seriennummer #🎜🎜 ##🎜🎜 #
  4. Verwenden Sie Filter, um Top-10-Daten zu filtern #
  5. Datenquelle auswählen, eine Bibliothekstabelle auswählen oder eine CSV-Datei hochladen oder eine Verbindung zu LarkSheet herstellen
Feldinformationen filtern Sie müssen Ihre eigenen definierten Feldnamen und Formate verwenden und konfigurieren zur Datums- und Stadtaggregation
    # 🎜🎜#
  1. Wählen Sie den Top-Wert-Operator und nehmen Sie den Top10-Betrag
  2. #🎜🎜 #
  3. Datensatz ausgeben, Daten Der Satz kann zum Zeichnen von Diagrammen in Fengshen angewendet werden

    火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

    2.2 [Szenario 2] Kombinieren Sie schnell mehrere Tabellen, um Multi-Daten-Assoziationsberechnungen einfach zu lösen.

    Im Datenverarbeitungsprozess müssen mehrere Datenquellen kombiniert und verwendet werden. Es ist schwierig, sie auf hoher Ebene zu beherrschen Vlookup und andere Algorithmen über Excel und dauert lange. Wenn gleichzeitig die Datenmenge groß ist, ist die Computerleistung möglicherweise nicht in der Lage, die kombinierte Berechnung der Daten abzuschließen.

    Wenn zwei Bestelldaten mit einer relativ großen Datenmenge und eine Tabelle mit Kundenattributinformationen vorhanden sind, muss der Gewinnbetrag basierend auf dem Rechnungsbetrag und dem Kostenbetrag berechnet werden, und dann werden die Top-100-Benutzer-Bestellinformationen basierend darauf übernommen Gewinnbeitrag

    Sie müssen die beiden Bestelldaten öffnen und Kopieren Sie die Daten in eine Datei Dann können Sie die Bestelldaten für März/April zu einem einzigen Daten zusammenführen
    Verwenden Sie VloopUp, um die Benutzerdaten in der Bestellung und die Benutzerdaten im Kunden zu finden, und kombinieren Sie dann die beiden Daten, um neue Daten zu generieren

    Verwenden Sie eine Pivot-Tabelle, um Berechnen Sie den Benutzerrechnungsbetrag und den Kostenbetrag und berechnen Sie dann den Gewinnbetrag.

    Erhalten Sie TopN-Kundeninformationen sortiert nach Gewinnbetrag

    1. Verbinden Sie die Attributtabelle der Kundeninformationen und verknüpfen Sie die Kundenattributinformationen
    2. Wählen Sie die Aggregation aus, um den Rechnungsbetrag und den Kostenbetrag zu berechnen entsprechend dem kundenspezifischen Betrag
    3. Wählen Sie die Berechnungsspalte aus, um den Gewinn basierend auf dem Rechnungsbetrag und dem Kostenbetrag zu berechnen. Betrag
    4. Sortieren Sie nach Gewinnbetrag, um TopN-Kundeninformationen zu erhalten
    1. 火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

      3. KI-Data-Mining ist nicht mehr unerreichbar

      Wenn die Datenkonstruktion und Datenanalyse nicht mehr ausreichend ist, wann Sie benötigen die Unterstützung von KI-Algorithmen, um mehr versteckte Werte in den Daten zu ermitteln. Studenten des Algorithmenteams leiden möglicherweise unter der Unfähigkeit, gut mit visuellen Diagrammen zu arbeiten, und können keine guten Daten produzieren, die schnell angewendet werden können, während normale Benutzer möglicherweise direkt durch die hohe Schwelle des KI-Codes daran gehindert werden, die Entwicklung dieses Algorithmus zu unterdrücken – was die Anforderungen erhöht Aber aus Angst ist die Nachfrage zu gering und der Wert kann derzeit nicht richtig eingeschätzt werden.

      Die visuelle Modellierung von DataWind umfasst mehr als 30 gängige KI-Operatorfunktionen. Benutzer müssen lediglich die Funktion des Algorithmus verstehen und die Eingabe- und Trainingsziele des Algorithmusoperators durch Modelltraining konfigurieren, um schnell eine Vorhersage zu erhalten Ergebnisse basierend auf anderen konfigurierten Dateninhalten.

      火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

      火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

      火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

      # 🎜🎜# Im Folgenden zeigen wir Ihnen anhand zweier typischer Szenarios, wie Sie das Data Mining mit Python durchführen.

      3.1 [Grundkenntnisse] Sie können Data Mining durchführen, auch wenn Sie Python nicht kennen

      Die tägliche Arbeit der Benutzer umfasst im Grunde nichts Schreiben von Python, aber es gibt Data-Mining-Anforderungsszenarien. Er muss ein Customer Intention Mining auf der Grundlage bestehender Kundenstichproben mit hoher Absicht durchführen. An diesem Punkt kann der Data-Mining-Prozess durch visuelle Modellierung aufgebaut werden:

        Ziehen Sie die Beispieldaten und alle Daten als Dateneingabe hinein.
      1. Ziehen Sie es in den Klassifizierungsalgorithmus, z. B. den XGB-Algorithmus für das Modelltraining.
      2. Ziehen Sie den Vorhersageoperator hinein und bauen Sie die Beziehung zwischen dem Modell und allen Daten für die Vorhersage auf.
      3. Die tatsächlichen Daten und vorhergesagten Ergebnisse werden mit dem Ausgabedatensatz kombiniert, um die Absichtsverteilung aller Benutzerdaten zu analysieren.


      火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

      3.2 [Fortgeschritten] Sie können komplexe Algorithmusmodelle erstellen, ohne Python

      Benutzer zu schreiben Sie müssen ein Benutzerrückkaufmodell basierend auf vorhandenen Daten erstellen. Während der Modellerstellung ist es notwendig, nach der Datenbereinigung und Formatkonvertierung einen Gradienten-Boosting-Baum zu verwenden. Zu diesem Zeitpunkt kann der Rückkaufmodellprozess basierend auf der visuellen Modellierung erstellt werden:

      #🎜 🎜#

      # 🎜🎜#火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写Zeilen zusammenführen: Füge die Ausgabedatentabellen von n Operatoren (Rechtecke im Bild) zu einer Gesamtdatentabelle zusammen, die auf konsistenten Überschriften basiert In den Benutzerverkaufsdaten sind hier keine Änderungen erforderlich.

        Ersetzung fehlender Werte: Wenn in der Attributspalte ein Nullwert (null) vorhanden ist, wirkt sich dies auf nachfolgende Modellberechnungen aus. Verwenden Sie den Operator „Fehlende Werte ersetzen“, um den Nullwert durch den angegebenen Standardwert zu ersetzen. Es gibt kein Hinzufügen oder Löschen von Benutzerverkaufsdaten. Es besteht keine Notwendigkeit, die Eigenschaften hier zu ändern.
      1. One-Hot-Codierung: Texttypattribute können nicht direkt vom Modelltraining verwendet werden und erfordern eine One-Hot-Codierung in einen numerischen Vektor. Zum Beispiel:
      2. #🎜🎜 ##🎜 🎜#
      Gradient Boosting Tree: Verantwortlich für die Anpassung der Trainingsdaten und die Ausgabe eines Modells, das für die Vorhersage verwendet werden kann (Parameter, die in der Abbildung nicht markiert sind, müssen von Betreuern nicht geändert werden): # 🎜🎜#

      火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

      Aggregation_1: Duplikate in den Vorhersagedaten entfernen und die maximale Wahrscheinlichkeit verwenden.


      Felder extrahieren: Extrahieren Sie die erforderliche Beschriftung und Wahrscheinlichkeitswertausgabe. 火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

      1. 4. Multi-Szenario-, Multi-Task-Konstruktion, Management ist nicht mehr dezentral

        Als Datenanalyst wird es im täglichen Leben viel Arbeit geben, Datensätze und Daten-Dashboards zu erstellen . Normalerweise handelt es sich bei der aus dem Data Warehouse erhaltenen unteren Tabelle um eine breite Tabelle. Auf dieser Grundlage werden verschiedene Datensatzaufgaben entsprechend den unterschiedlichen Szenarioanforderungen erstellt.

        Bei der späteren Verwendung stoßen wir häufig auf immer mehr ähnliche Datensätze, die spezifische Logik kann jedoch nicht gut verglichen und bestätigt werden. Zu diesem Zeitpunkt wäre es großartig, wenn die gesamte Datensatzlogik in einem Datensatz konfiguriert und generiert würde und jeder Datensatz durch den Aufgabenprozess beurteilt und definiert werden könnte.

        Für dieses Szenario können auch die visuellen Modellierungsfunktionen von DataWind sehr gut ergänzt werden. Die visuelle Modellierungsfunktion unterstützt die gleichzeitige Verarbeitung eines einzelnen Datensatzes durch mehrere Logikprozesse, um mehrere Datensätze zu generieren. Nehmen Sie als Beispiel die Verarbeitung von Bestelldaten und Benutzerdaten:

        1. Wenn ein Benutzer Bestellstatistiken sehen möchte, kann er den Datenverarbeitungsprozess von Auftragsstatistikdatensatz# aufbauen 🎜🎜# .
        2. Es gibt Benutzer, die detaillierte Daten sehen möchten, aber die Detailfelder müssen verarbeitet und bereinigt werden. In diesem Fall kann der Verarbeitungsablauf von
        3. Bestelldetails-Datensatz erfolgen konstruiert werden.
        4. Einige Benutzer möchten Benutzerattribute kombinieren, um die Bestellverteilung des Benutzers zu zählen, und dann eine Zuordnung mit mehreren Tabellen in Kombination mit der Indikatoraggregation erstellen, um einen statistischen Datensatz für
        5. Benutzerbestellungen zu generieren.
        6. Die gleiche Logik kann den
        7. -Datensatz mit Benutzerbestelldetails unter Mehrfachtabellenzuordnung generieren.
        Somit wird die Generierung von 4 Datensätzen durch eine Aufgabe und zwei Dateneingaben abgeschlossen. Die 4 Datensätze können eine Datensubjektdomäne erstellen und anschließend verwandte Daten verwenden die Datensätze, die als Ausgabe dieser Aufgabe verfügbar sind.

        火山引擎工具技术分享:用 AI 完成数据挖掘,零门槛完成 SQL 撰写

        5. Über uns

        Volcano Engine Intelligent Data Insight DataWind ist eine erweiterte Unterstützung ABI-Plattform für die Self-Service-Analyse von Big Data auf granularer Ebene. Vom Datenzugriff über die Datenintegration bis hin zur Abfrage und Analyse werden sie schließlich Geschäftsanwendern in Form von visuellen Datenportalen, digitalen Großbildschirmen und Management-Cockpits präsentiert, sodass Daten ihren Wert entfalten können.

Das obige ist der detaillierte Inhalt vonTeilen der Technologie des Volcano-Engine-Tools: Verwenden Sie KI, um das Data Mining und das SQL-Schreiben ohne Schwellenwert von Null abzuschließen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Dieser Artikel ist reproduziert unter:51CTO.COM. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen
10 generative AI -Codierungsweiterungen im VS -Code, die Sie untersuchen müssen10 generative AI -Codierungsweiterungen im VS -Code, die Sie untersuchen müssenApr 13, 2025 am 01:14 AM

Hey da, codieren Ninja! Welche Codierungsaufgaben haben Sie für den Tag geplant? Bevor Sie weiter in diesen Blog eintauchen, möchte ich, dass Sie über all Ihre Coding-Leiden nachdenken-die Auflistung auflisten diese auf. Erledigt? - Lassen Sie ’

Kochen innovation: Wie künstliche Intelligenz den Lebensmittelservice verändertKochen innovation: Wie künstliche Intelligenz den Lebensmittelservice verändertApr 12, 2025 pm 12:09 PM

KI verstärken die Zubereitung der Lebensmittel KI -Systeme werden während der Nahten immer noch in der Zubereitung von Nahrungsmitteln eingesetzt. KI-gesteuerte Roboter werden in Küchen verwendet, um Aufgaben zur Zubereitung von Lebensmitteln zu automatisieren, z.

Umfassende Anleitung zu Python -Namespaces und variablen ScopesUmfassende Anleitung zu Python -Namespaces und variablen ScopesApr 12, 2025 pm 12:00 PM

Einführung Das Verständnis der Namespaces, Scopes und des Verhaltens von Variablen in Python -Funktionen ist entscheidend, um effizient zu schreiben und Laufzeitfehler oder Ausnahmen zu vermeiden. In diesem Artikel werden wir uns mit verschiedenen ASP befassen

Ein umfassender Leitfaden zu Vision Language Models (VLMs)Ein umfassender Leitfaden zu Vision Language Models (VLMs)Apr 12, 2025 am 11:58 AM

Einführung Stellen Sie sich vor, Sie gehen durch eine Kunstgalerie, umgeben von lebhaften Gemälden und Skulpturen. Was wäre, wenn Sie jedem Stück eine Frage stellen und eine sinnvolle Antwort erhalten könnten? Sie könnten fragen: „Welche Geschichte erzählst du?

MediaTek steigert die Premium -Aufstellung mit Kompanio Ultra und Abmessung 9400MediaTek steigert die Premium -Aufstellung mit Kompanio Ultra und Abmessung 9400Apr 12, 2025 am 11:52 AM

In diesem Monat hat MediaTek in diesem Monat eine Reihe von Ankündigungen gemacht, darunter das neue Kompanio Ultra und die Abmessung 9400. Diese Produkte füllen die traditionelleren Teile von MediaTeks Geschäft aus, die Chips für Smartphone enthalten

Diese Woche in AI: Walmart setzt Modetrends vor, bevor sie jemals passierenDiese Woche in AI: Walmart setzt Modetrends vor, bevor sie jemals passierenApr 12, 2025 am 11:51 AM

#1 Google gestartet Agent2Agent Die Geschichte: Es ist Montagmorgen. Als mit KI betriebener Personalvermittler arbeiten Sie intelligenter, nicht härter. Sie melden sich im Dashboard Ihres Unternehmens auf Ihrem Telefon an. Es sagt Ihnen, dass drei kritische Rollen bezogen, überprüft und geplant wurden

Generative KI trifft PsychobabbleGenerative KI trifft PsychobabbleApr 12, 2025 am 11:50 AM

Ich würde vermuten, dass du es sein musst. Wir alle scheinen zu wissen, dass Psychobabble aus verschiedenen Geschwätzern besteht, die verschiedene psychologische Terminologie mischen und oft entweder unverständlich oder völlig unsinnig sind. Alles was Sie tun müssen, um fo zu spucken

Der Prototyp: Wissenschaftler verwandeln Papier in PlastikDer Prototyp: Wissenschaftler verwandeln Papier in PlastikApr 12, 2025 am 11:49 AM

Laut einer neuen Studie, die diese Woche veröffentlicht wurde, wurden im Jahr 2022 nur 9,5% der im Jahr 2022 hergestellten Kunststoffe aus recycelten Materialien hergestellt. In der Zwischenzeit häufen sich Plastik weiter in Deponien - und Ökosystemen - um die Welt. Aber Hilfe ist unterwegs. Ein Team von Engin

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor