Heim > Artikel > Backend-Entwicklung > So verwenden Sie das Python3 Loguru-Ausgabeprotokolltool
Das Python-Protokollierungsmodul definiert Funktionen und Klassen, die eine flexible Ereignisprotokollierung für Anwendungen und Bibliotheken implementieren.
Während des Programmentwicklungsprozesses müssen viele Programme Protokolle aufzeichnen. Die in den Protokollen enthaltenen Informationen umfassen normale Programmzugriffsprotokolle und können auch Fehler, Warnungen und andere Informationsausgaben umfassen. Das Protokollierungsmodul von Python bietet eine Standardprotokollschnittstelle. die übergeben werden kann. Es speichert Protokolle in verschiedenen Formaten, und die Protokollierung bietet eine Reihe praktischer Funktionen für eine einfache Protokollierung.
Der Hauptvorteil der Verwendung des Python-Logging-Moduls besteht darin, dass alle Python-Module an der Protokollierung teilnehmen können. Das Logging-Modul bietet eine Vielzahl flexibler Funktionen.
Es ist einfach und bequem, uns bei der Ausgabe der erforderlichen Protokollinformationen zu helfen:
Bei der Verwendung von Python zum Schreiben von Programmen oder Skripten besteht ein häufiges Problem darin, dass das Protokoll gelöscht werden muss. Einerseits kann es uns helfen, Probleme zu beheben, wenn ein Problem mit dem Programm vorliegt, und andererseits kann es uns helfen, die Informationen aufzuzeichnen, die Aufmerksamkeit erfordern.
Wenn wir jedoch das integrierte Protokollierungsmodul verwenden, müssen wir andere Initialisierungs- und andere damit verbundene Arbeiten durchführen. Für Studierende, die mit diesem Modul nicht vertraut sind, ist es immer noch etwas schwierig, z. B. die Notwendigkeit, Handler/Formatter usw. zu konfigurieren. Mit zunehmender Komplexität des Geschäfts werden höhere Anforderungen an die Protokollsammlung gestellt, z. B. Protokollklassifizierung, Dateispeicherung, asynchrones Schreiben, benutzerdefinierte Typen usw.
loguru ist eine einfache und leistungsstarke Protokollierungsbibliothek eines Drittanbieters in Python zielt darauf ab, die Python-Protokollierung weniger mühsam zu machen, indem eine Reihe nützlicher Funktionen hinzugefügt werden, die die Einschränkungen des Standard-Loggers beheben.
pip install loguruKeine Initialisierung erforderlich, dann importieren Sie einfach die zu verwendende Funktion Sie müssen sich fragen, wie Sie das Problem lösen können?
from loguru import logger logger.debug("That's it, beautiful and simple logging!")
4. Einfachere Dateiprotokollierung und Dumping-/Aufbewahrungs-/Komprimierungsmethoden
# add logger.add(sys.stderr, \ format="{time} {level} {message}",\ filter="my_module",\ level="INFO")
# 日志文件记录 logger.add("file_{time}.log") # 日志文件转存 logger.add("file_{time}.log", rotation="500 MB") logger.add("file_{time}.log", rotation="12:00") logger.add("file_{time}.log", rotation="1 week") # 多次时间之后清理 logger.add("file_X.log", retention="10 days") # 使用zip文件格式保存 logger.add("file_Y.log", compression="zip")
logger.info( "If you're using Python {}, prefer {feature} of course!", 3.10, feature="f-strings")
kann asynchron ausgeführt werden
wird verwendet, um Fehlerspuren von Ausnahmen aufzuzeichnen, die im Code auftreten. Loguru ermöglicht die Anzeige des gesamten Stack-Trace ( einschließlich Variablenwert), um Ihnen bei der Identifizierung des Problems zu helfen bevor Sie es in einen JSON-String konvertieren.
Außerdem können Logger-Meldungen mithilfe der bind()-Methode in einen Kontext gebracht werden, indem zusätzliche Datensatzeigenschaften geändert werden. Sie können die Protokollierung auch detaillierter steuern, indem Sie bind() und filter kombinieren. enqueue=True
@logger.catch def my_function(x, y, z): # An error? It's caught anyway! return 1 / (x + y + z) my_function(0, 0, 0)
logger.add(sys.stdout, colorize=True, format="<green>{time}</green> <level>{message}</level>") logger.add('logs/z_{time}.log', level='DEBUG', format='{time:YYYY-MM-DD :mm:ss} - {level} - {file} - {line} - {message}', rotation="10 MB")12. Anpassbare Ebenen
# 异步写入 logger.add("some_file.log", enqueue=True)
logger.add("out.log", backtrace=True, diagnose=True) def func(a, b): return a / b def nested(c): try: func(5, c) except ZeroDivisionError: logger.exception("What?!") nested(0)14. Möchten Sie Loguru als integrierten Protokollhandler verwenden?
handler = logging.handlers.SysLogHandler(address=('localhost', 514)) logger.add(handler) class PropagateHandler(logging.Handler): def emit(self, record): logging.getLogger(record.name).handle(record) logger.add(PropagateHandler(), format="{message}") class InterceptHandler(logging.Handler): def emit(self, record): # Get corresponding Loguru level if it exists try: level = logger.level(record.levelname).name except ValueError: level = record.levelno # Find caller from where originated the logged message frame, depth = logging.currentframe(), 2 while frame.f_code.co_filename == logging.__file__: frameframe = frame.f_back depth += 1 logger.opt(depthdepth=depth, exception=record.exc_info).log(level, record.getMessage()) logging.basicConfig(handlers=[InterceptHandler()], level=0)
从生成的日志中提取特定的信息通常很有用,这就是为什么 Loguru 提供了一个 parse() 方法来帮助处理日志和正则表达式。
pattern = r"(?P<time>.*) - (?P<level>[0-9]+) - (?P<message>.*)" # Regex with named groups caster_dict = dict(time=dateutil.parser.parse, level=int) # Transform matching groups for groups in logger.parse("file.log", pattern, cast=caster_dict): print("Parsed:", groups) # {"level": 30, "message": "Log example", "time": datetime(2018, 12, 09, 11, 23, 55)}
import notifiers params = { "username": "you@gmail.com", "password": "abc123", "to": "dest@gmail.com" } # Send a single notification notifier = notifiers.get_notifier("gmail") notifier.notify(message="The application is running!", **params) # Be alerted on each error message from notifiers.logging import NotificationHandler handler = NotificationHandler("gmail", defaults=params) logger.add(handler, level="ERROR")
现在最关键的一个问题是如何兼容别的 logger,比如说 tornado 或者 django 有一些默认的 logger。
经过研究,最好的解决方案是参考官方文档的,完全整合 logging 的工作方式。比如下面将所有的 logging都用 loguru 的 logger 再发送一遍消息。
import logging import sys from pathlib import Path from flask import Flask from loguru import logger app = Flask(__name__) class InterceptHandler(logging.Handler): def emit(self, record): loggerlogger_opt = logger.opt(depth=6, exception=record.exc_info) logger_opt.log(record.levelname, record.getMessage()) def configure_logging(flask_app: Flask): """配置日志""" path = Path(flask_app.config['LOG_PATH']) if not path.exists(): path.mkdir(parents=True) log_name = Path(path, 'sips.log') logging.basicConfig(handlers=[InterceptHandler(level='INFO')], level='INFO') # 配置日志到标准输出流 logger.configure(handlers=[{"sink": sys.stderr, "level": 'INFO'}]) # 配置日志到输出到文件 logger.add(log_name, rotation="500 MB", encoding='utf-8', colorize=False, level='INFO')
介绍,主要函数的使用方法和细节 - add()的创建和删除
add() 非常重要的参数 sink 参数
具体的实现规范可以参见官方文档
可以实现自定义 Handler 的配置,比如 FileHandler、StreamHandler 等等
可以自行定义输出实现
代表文件路径,会自动创建对应路径的日志文件并将日志输出进去
例如 sys.stderr 或者 open(‘file.log’, ‘w’) 都可以
可以传入一个 file 对象
可以直接传入一个 str 字符串或者 pathlib.Path 对象
可以是一个方法
可以是一个 logging 模块的 Handler
可以是一个自定义的类
def add(self, sink, *, level=_defaults.LOGURU_LEVEL, format=_defaults.LOGURU_FORMAT, filter=_defaults.LOGURU_FILTER, colorize=_defaults.LOGURU_COLORIZE, serialize=_defaults.LOGURU_SERIALIZE, backtrace=_defaults.LOGURU_BACKTRACE, diagnose=_defaults.LOGURU_DIAGNOSE, enqueue=_defaults.LOGURU_ENQUEUE, catch=_defaults.LOGURU_CATCH, **kwargs ):
另外添加 sink 之后我们也可以对其进行删除,相当于重新刷新并写入新的内容。删除的时候根据刚刚 add 方法返回的 id 进行删除即可。可以发现,在调用 remove 方法之后,确实将历史 log 删除了。但实际上这并不是删除,只不过是将 sink 对象移除之后,在这之前的内容不会再输出到日志中,这样我们就可以实现日志的刷新重新写入操作
from loguru import logger trace = logger.add('runtime.log') logger.debug('this is a debug message') logger.remove(trace) logger.debug('this is another debug message')
我们在开发流程中, 通过日志快速定位问题, 高效率解决问题, 我认为 loguru 能帮你解决不少麻烦, 赶快试试吧~
当然, 使用各种也有不少麻烦, 例如:
--- Logging error in Loguru Handler #3 ---
Record was: None
Traceback (most recent call last):
File "/usr/local/lib/python3.9/site-packages/loguru/_handler.py", line 272, in _queued_writer
message = queue.get()
File "/usr/local/lib/python3.9/multiprocessing/queues.py", line 366, in get
res = self._reader.recv_bytes()
File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 221, in recv_bytes
buf = self._recv_bytes(maxlength)
File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 419, in _recv_bytes
buf = self._recv(4)
File "/usr/local/lib/python3.9/multiprocessing/connection.py", line 384, in _recv
chunk = read(handle, remaining)
OSError: [Errno 9] Bad file descriptor
--- End of logging error ---
解决办法:
尝试将logs文件夹忽略git提交, 避免和服务器文件冲突即可;
当然也不止这个原因引起这个问题, 也可能是三方库(ciscoconfparse)冲突所致.解决办法: https://github.com/Delgan/loguru/issues/534
File "/home/ronaldinho/xxx/xxx/venv/lib/python3.9/site-packages/loguru/_logger.py", line 939, in add
handler = Handler(
File "/home/ronaldinho/xxx/xxx/venv/lib/python3.9/site-packages/loguru/_handler.py", line 86, in __init__
self._queue = multiprocessing.SimpleQueue()
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/context.py", line 113, in SimpleQueue
return SimpleQueue(ctx=self.get_context())
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/queues.py", line 342, in __init__
self._rlock = ctx.Lock()
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/context.py", line 68, in Lock
return Lock(ctx=self.get_context())
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/synchronize.py", line 162, in __init__
File "/home/ronaldinho/.pyenv/versions/3.9.4/lib/python3.9/multiprocessing/synchronize.py", line 57, in __init__
OSError: [Errno 24] Too many open files
你可以 remove()添加的处理程序,它应该释放文件句柄。
Das obige ist der detaillierte Inhalt vonSo verwenden Sie das Python3 Loguru-Ausgabeprotokolltool. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!