Heim >Datenbank >MySQL-Tutorial >mysql优化limit查询语句的5个方法_MySQL

mysql优化limit查询语句的5个方法_MySQL

WBOY
WBOYOriginal
2016-05-31 08:47:211042Durchsuche

mysql的分页比较简单,只需要limit offset,length就可以获取数据了,但是当offset和length比较大的时候,mysql明显性能下降

1.子查询优化法

先找出第一条数据,然后大于等于这条数据的id就是要获取的数据
缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性,具体方法请看下面的查询实例:
复制代码 代码如下:
mysql> set profiling=1;
Query OK, 0 rows affected (0.00 sec)

mysql> select count(*) from Member;
+----------+
| count(*) |
+----------+
|   169566 |
+----------+
1 row in set (0.00 sec)

mysql> pager grep !~-
PAGER set to 'grep !~-'

mysql> select * from Member limit 10, 100;
100 rows in set (0.00 sec)

mysql> select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100;
100 rows in set (0.00 sec)

mysql> select * from Member limit 1000, 100;
100 rows in set (0.01 sec)

mysql> select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100;
100 rows in set (0.00 sec)

mysql> select * from Member limit 100000, 100;
100 rows in set (0.10 sec)

mysql> select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100;
100 rows in set (0.02 sec)

mysql> nopager
PAGER set to stdout


mysql> show profiles/G
*************************** 1. row ***************************
Query_ID: 1
Duration: 0.00003300
   Query: select count(*) from Member

*************************** 2. row ***************************
Query_ID: 2
Duration: 0.00167000
   Query: select * from Member limit 10, 100
*************************** 3. row ***************************
Query_ID: 3
Duration: 0.00112400
   Query: select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100

*************************** 4. row ***************************
Query_ID: 4
Duration: 0.00263200
   Query: select * from Member limit 1000, 100
*************************** 5. row ***************************
Query_ID: 5
Duration: 0.00134000
   Query: select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100

*************************** 6. row ***************************
Query_ID: 6
Duration: 0.09956700
   Query: select * from Member limit 100000, 100
*************************** 7. row ***************************
Query_ID: 7
Duration: 0.02447700
   Query: select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100

从结果中可以得知,当偏移1000以上使用子查询法可以有效的提高性能。

2.倒排表优化法

倒排表法类似建立索引,用一张表来维护页数,然后通过高效的连接得到数据

缺点:只适合数据数固定的情况,数据不能删除,维护页表困难

倒排表介绍:(而倒排索引具称是搜索引擎的算法基石)

倒排表是指存放在内存中的能够追加倒排记录的倒排索引。倒排表是迷你的倒排索引。

临时倒排文件是指存放在磁盘中,以文件的形式存储的不能够追加倒排记录的倒排索引。临时倒排文件是中等规模的倒排索引。

最终倒排文件是指由存放在磁盘中,以文件的形式存储的临时倒排文件归并得到的倒排索引。最终倒排文件是较大规模的倒排索引。

倒排索引作为抽象概念,而倒排表、临时倒排文件、最终倒排文件是倒排索引的三种不同的表现形式。

3.反向查找优化法

当偏移超过一半记录数的时候,先用排序,这样偏移就反转了

缺点:order by优化比较麻烦,要增加索引,索引影响数据的修改效率,并且要知道总记录数 ,偏移大于数据的一半

limit偏移算法:
正向查找: (当前页 - 1) * 页长度
反向查找: 总记录 - 当前页 * 页长度

做下实验,看看性能如何

总记录数:1,628,775
每页记录数: 40
总页数:1,628,775 / 40 = 40720
中间页数:40720 / 2 = 20360

第21000页
正向查找SQL:
复制代码 代码如下:SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 839960, 40 
时间:1.8696 秒

反向查找sql:
复制代码 代码如下:SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 788775, 40
时间:1.8336 秒

第30000页
正向查找SQL: 
复制代码 代码如下:SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40 
时间:2.6493 秒

反向查找sql:
复制代码 代码如下:SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40 
时间:1.0035 秒

注意,反向查找的结果是是降序desc的,并且InputDate是记录的插入时间,也可以用主键联合索引,但是不方便。

4.limit限制优化法

把limit偏移量限制低于某个数。。超过这个数等于没数据,我记得alibaba的dba说过他们是这样做的

5.只查索引法

MySQL的limit工作原理就是先读取n条记录,然后抛弃前n条,读m条想要的,所以n越大,性能会越差。
优化前SQL:
复制代码 代码如下:SELECT * FROM member ORDER BY last_active LIMIT 50,5
优化后SQL:
复制代码 代码如下:SELECT * FROM member INNER JOIN (SELECT member_id FROM member ORDER BY last_active LIMIT 50, 5) USING (member_id)
区别在于,优化前的SQL需要更多I/O浪费,因为先读索引,再读数据,然后抛弃无需的行。而优化后的SQL(子查询那条)只读索引(Cover index)就可以了,然后通过member_id读取需要的列。

总结:limit的优化限制都比较多,所以实际情况用或者不用只能具体情况具体分析了。页数那么后,基本很少人看的。。。

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Vorheriger Artikel:MySQL 通配符学习小结Nächster Artikel:Mysql 性能优化