1. Häufig verwendete Bibliotheken für den Betrieb von Excel mit Python
Bevor Sie mit dem Betrieb von Excel beginnen, müssen Sie Python und einige verwandte Bibliotheken installieren. Sie können pip verwenden, um die folgenden Bibliotheken zu installieren, oder einen professionellen Python-Client verwenden: pycharm, um Python und verwandte Bibliotheken schnell zu installieren.
pandas: zum Verarbeiten von Excel-Dateien und -Daten
openpyxl: zum Lesen und Schreiben von Excel-Dateien #🎜 🎜#
- xlrd: wird zum Lesen einer Excel-Datei verwendet.
- xlwt: wird zum Schreiben einer Excel-Datei verwendet.
#🎜 🎜#
1. Verwenden Sie die Drittanbieterbibliothek openpyxl
openpyxl ist eine Python-Bibliothek zum Lesen und Schreiben von Excel 2010 xlsx/xlsm/xltx/xltm-Dateien. Es kann Excel-Dateien lesen und schreiben, unterstützt mehrere Arbeitsblätter, Diagramme und mehr.
Beispielcode:
import openpyxl # 打开 Excel 文件 workbook = openpyxl.load_workbook('example.xlsx') # 获取所有工作表名 sheet_names = workbook.sheetnames print(sheet_names) # 获取指定工作表 sheet = workbook['Sheet1'] # 获取单元格数据 cell = sheet['A1'] print(cell.value) # 修改单元格数据 sheet['A1'] = 'Hello World' # 保存 Excel 文件 workbook.save('example.xlsx')
2. Verwenden Sie die Bibliotheken xlrd und xlwt
xlrd und xlwt werden zum Lesen bzw. Schreiben von Excel-Dateien verwendet , unterstützt mehrere Arbeitsblätter, unterstützt jedoch nicht das Excel 2010 xlsx/xlsm/xltx/xltm-Format.
Beispielcode:
import xlrd import xlwt # 打开 Excel 文件 workbook = xlrd.open_workbook('example.xls') # 获取所有工作表名 sheet_names = workbook.sheet_names() print(sheet_names) # 获取指定工作表 sheet = workbook.sheet_by_name('Sheet1') # 获取单元格数据 cell = sheet.cell(0, 0) print(cell.value) # 修改单元格数据 new_workbook = xlwt.Workbook() new_sheet = new_workbook.add_sheet('Sheet1') new_sheet.write(0, 0, 'Hello World') new_workbook.save('example.xls')
3. Verwenden Sie die Pandas-Bibliothek
pandas ist eine Python-Bibliothek zur Datenanalyse und kann auch zum Lesen und Verwenden verwendet werden Schreiben einer Excel-Datei, unterstützt mehrere Arbeitsblätter, unterstützt jedoch nicht das Excel 2010-Format xlsx/xlsm/xltx/xltm.
Beispielcode:
import pandas as pd # 读取 Excel 文件 df = pd.read_excel('example.xls', sheet_name='Sheet1') # 获取单元格数据 value = df.iloc[0, 0] print(value) # 修改单元格数据 df.iloc[0, 0] = 'Hello World' df.to_excel('example.xls', index=False)
2. 10 gängige Möglichkeiten, Excel mit Python zu bedienen
1. Excel-Dateien lesen
#🎜 🎜 #Verwenden Sie die Funktion read_excel() in der Pandas-Bibliothek, um Excel-Dateien zu lesen. Der Beispielcode lautet wie folgt:import pandas as pd
# 读取Excel文件
df = pd.read_excel('example.xlsx')
2. In Excel-Datei schreiben Verwenden Sie die Funktion to_excel() in der Pandas-Bibliothek, um Daten in eine Excel-Datei zu schreiben. Der Beispielcode lautet wie folgt: import pandas as pd
# 将数据写入Excel文件
df.to_excel('example.xlsx', index=False)
3. Zeilen oder Spalten einfügen Verwenden Sie die Funktion append() in der Pandas-Bibliothek, um Zeilen oder Spalten einzufügen. Der Beispielcode lautet wie folgt: import pandas as pd
# 插入行
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df = df.append({'A': 4, 'B': 7}, ignore_index=True)
# 插入列
df['C'] = [7, 8, 9, 10]
4. Zeilen oder Spalten löschen Verwenden Sie die Funktion drop() in der Pandas-Bibliothek, um Zeilen oder Spalten zu löschen. Der Beispielcode lautet wie folgt: import pandas as pd
# 删除行
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df = df.drop(1)
# 删除列
df = df.drop('B', axis=1)
5. Ändern Sie den Zellenwert Verwenden Sie die Funktion at() oder die Funktion .iat() in der Pandas-Bibliothek, um den Wert zu ändern der Zelle. Der Beispielcode lautet wie folgt: import pandas as pd
# 修改单元格值
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df.at[1, 'B'] = 7
# 使用.iat()函数修改单元格值
df.iat[0, 1] = 8
6. Suchen Sie den Zellenwert Verwenden Sie die Funktion .loc() oder .iloc() in der Pandas-Bibliothek, um den zu finden Wert der Zelle. Der Beispielcode lautet wie folgt: import pandas as pd
# 查找单元格值
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
value = df.loc[1, 'B']
# 使用.iloc()函数查找单元格值
value = df.iloc[1, 1]
7. Daten sortierenVerwenden Sie die Funktion sort_values() in der Pandas-Bibliothek, um die Daten zu sortieren. Der Beispielcode lautet wie folgt: import pandas as pd
# 对数据进行排序
df = pd.DataFrame({'A': [1, 3, 2], 'B': [4, 6, 5]})
df = df.sort_values(by='A')
8. Daten zusammenführenVerwenden Sie die Funktion merge() in der Pandas-Bibliothek, um Daten zusammenzuführen. Der Beispielcode lautet wie folgt: import pandas as pd
# 合并数据
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [1, 2, 4], 'C': [7, 8, 9]})
df = pd.merge(df1, df2, on='A')
9 GruppendatenVerwenden Sie die Funktion „groupby()“ in der Pandas-Bibliothek, um Daten zu gruppieren. Der Beispielcode lautet wie folgt: import pandas as pd
# 分组数据
df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
'C': [1, 2, 3, 4, 5, 6, 7, 8]})
grouped = df.groupby(['A', 'B'])
10. Berechnen Sie Datenstatistiken Verwenden Sie die Funktion „beschreiben“ in der Pandas-Bibliothek, um Datenstatistiken zu berechnen. Der Beispielcode lautet wie folgt: import pandas as pd
# 计算数据统计量
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
desc = df.describe()
Das obige ist der detaillierte Inhalt vonWie verwende ich Python für die Excel-Automatisierung?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.

Python eignet sich für eine schnelle Entwicklung und Datenverarbeitung, während C für hohe Leistung und zugrunde liegende Kontrolle geeignet ist. 1) Python ist einfach zu bedienen, mit prägnanter Syntax, und eignet sich für Datenwissenschaft und Webentwicklung. 2) C hat eine hohe Leistung und eine genaue Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

Die Zeit, die zum Erlernen von Python erforderlich ist, variiert von Person zu Person, hauptsächlich von früheren Programmiererfahrungen, Lernmotivation, Lernressourcen und -methoden und Lernrhythmus. Setzen Sie realistische Lernziele und lernen Sie durch praktische Projekte am besten.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft