Die Daten-Engines, die in Java-Anwendungen eingebettet werden können, scheinen umfangreich zu sein, aber tatsächlich ist die Auswahl nicht einfach. Redis verfügt über eine geringe Rechenleistung und ist nur für einfache Abfrageszenarien geeignet. Die Spark-Architektur ist komplex und umfangreich, was die Bereitstellung und Wartung sehr mühsam macht. Eingebettete Datenbanken wie H2HSQLDBDerby haben eine einfache Struktur, ihre Rechenleistung reicht jedoch nicht aus und sie unterstützen nicht einmal grundlegende Fensterfunktionen.
Im Gegensatz dazu hat SQLite ein besseres Gleichgewicht zwischen Architektur und Rechenleistung erreicht und ist eine weit verbreitete eingebettete Java-Daten-Engine.
SQLite hat eine einfache Struktur. Obwohl der Kern in C-Sprache entwickelt wurde, ist es gut verpackt und wird nach außen als kleines Jar-Paket präsentiert, das problemlos in Java-Anwendungen integriert werden kann. SQLite bietet eine JDBC-Schnittstelle, die von Java aufgerufen werden kann:
Connection connection = DriverManager.getConnection("jdbc:sqlite::memory:"); Statement st = connection.createStatement(); st.execute("restore from d:/ex1"); ResultSet rs = st.executeQuery("SELECT * FROM orders");
SQLite bietet Standard-SQL-Syntax und routinemäßige Datenverarbeitung und Berechnungen sind kein Problem. Insbesondere unterstützt SQLite bereits Fensterfunktionen, die viele gruppeninterne Vorgänge problemlos implementieren können und über eine stärkere Rechenleistung als andere eingebettete Datenbanken verfügen.
SELECT x, y, row_number() OVER (ORDER BY y) AS row_number FROM t0 ORDER BY x; SELECT a, b, group_concat(b, '.') OVER ( ORDER BY a ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS group_concat FROM t1;
SQLite hat herausragende Vorteile, weist jedoch immer noch einige Mängel auf, wenn es um komplexe Anwendungsszenarien geht.
Java-Anwendungen können eine Vielzahl von Datenquellen verarbeiten, wie z. B. CSV-Dateien, RDB, Excel, Restful, aber SQLite verarbeitet nur einfache Fälle, das heißt, es stellt einen direkt verfügbaren Befehlszeilenlader für Textdateien wie csv bereit:
.import --csv --skip 1 --schema temp /Users/scudata/somedata.csv tab1
Für die meisten anderen Datenquellen bietet SQLite keine praktischen Schnittstellen. Sie können zum Laden von Daten nur Code schreiben, was einen mehrmaligen Aufruf der Befehlszeile erfordert. Der gesamte Vorgang ist sehr umständlich und zeitaufwändig.
Nehmen Sie das Laden der RDB-Datenquelle als Beispiel: Verwenden Sie zunächst Java, um die Befehlszeile auszuführen und die RDB-Bibliothekstabelle in CSV zu konvertieren Führen Sie die Befehlszeile aus und importieren Sie die CSV-Datei. Indizieren Sie schließlich die neue Tabelle, um die Leistung zu verbessern. Diese Methode ist relativ starr. Wenn Sie die Tabellenstruktur und den Tabellennamen flexibel definieren oder die geladenen Daten durch Berechnung ermitteln möchten, ist das Schreiben des Codes schwieriger.
Ähnlich kann SQLite bei anderen Datenquellen nicht direkt geladen werden und muss ebenfalls einen langwierigen Konvertierungsprozess durchlaufen.
SQL kommt der natürlichen Sprache nahe, hat eine niedrige Lernschwelle und lässt sich leicht in einfache Berechnungen implementieren, eignet sich jedoch nicht für komplexe Berechnungen wie komplexe Mengenberechnungen, geordnete Berechnungen, assoziative Berechnungen und mehrstufige Berechnungen. SQLite verwendet SQL-Anweisungen für Berechnungen, und die Vor- und Nachteile von SQL werden übernommen. Wenn Sie diese komplexen Berechnungen kaum implementieren, erscheint der Code umständlich und schwer zu verstehen.
Zum Beispiel die längste Anzahl steigender Tage für eine bestimmte Aktie, die SQL sollte wie folgt geschrieben werden:
select max(continuousDays)-1 from (select count(*) continuousDays from (select sum(changeSign) over(order by tradeDate) unRiseDays from (select tradeDate, case when price>lag(price) over(order by tradeDate) then 0 else 1 end changeSign from AAPL) ) group by unRiseDays)
Dies ist nicht nur ein Problem von SQLite, sondern aufgrund unvollständiger Aggregation, fehlender Seriennummern von Objektreferenzen usw., anderen SQL-Datenbanken Auch diese Berechnungen sind nicht gut.
Geschäftslogik besteht aus strukturierter Datenberechnung und Prozesssteuerung. SQLite bietet jedoch keine gespeicherten Prozeduren und verfügt nicht über unabhängige Prozesssteuerungsfunktionen, sodass es normalerweise keine allgemeine Geschäftslogik implementieren kann die Beurteilungs- und Schleifenanweisungen des Java-Hauptprogramms. Da Java nicht über professionell strukturierte Datenobjekte zum Tragen von SQLite-Datentabellen und -Datensätzen verfügt, ist der Konvertierungsprozess umständlich, der Verarbeitungsprozess verläuft nicht reibungslos und die Entwicklungseffizienz ist nicht hoch.
Wie bereits erwähnt, ist der SQLite-Kernel ein C-Programm. Er kann zwar in Java-Anwendungen integriert werden, der Datenaustausch mit dem Java-Hauptprogramm erfordert jedoch eine zeitaufwändige Konvertierung Die Leistung ist offensichtlich unzureichend, wenn die Datenmenge groß ist oder die Interaktion häufig ist. Auch weil der Kernel ein C-Programm ist, zerstört SQLite in gewissem Maße die Konsistenz und Robustheit der Java-Architektur.
Für Java-Anwendungen ist esProc SPL nativ auf der JVM die bessere Wahl.
esProc SPL ist eine eingebettete Open-Source-Daten-Engine unter der JVM. Sie verfügt über eine einfache Architektur und kann Datenquellen direkt über die JDBC-Schnittstelle laden Folgeberechnungen einfach durchführen.
SPL hat eine einfache Architektur und erfordert keine unabhängigen Dienste. Solange das SPL-Jar-Paket eingeführt ist, kann es in der Java-Umgebung bereitgestellt werden.
Laden Sie die Datenquelle direkt, der Code ist kurz, der Prozess ist einfach und die Aktualität ist stark. Laden Sie beispielsweise Oracle:
a | |
1 | = Connect ("OrCl") |
2 | =a1.query@x ("Select orderid, Client, Sellerid , OrderDate ,Betrag aus Bestellungen nach OrderID") |
3 | >env(orders,A2) |
对于SQLite擅长加载的csv文件,SPL也可以直接加载,使用内置函数而不是外部命令行,稳定且效率高,代码更简短:
=T("/Users/scudata/somedata.csv")
多种外部数据源。除了RDB和csv,SPL还直接支持txt\xls等文件,MongoDB、Hadoop、redis、ElasticSearch、Kafka、Cassandra等NoSQL,以及WebService XML、Restful Json等多层数据。比如,将HDSF里的文件加载到内存:
A | |
1 | =hdfs_open(;"hdfs://192.168.0.8:9000") |
2 | =hdfs_file(A1,"/user/Orders.csv":"GBK") |
3 | =A2.cursor@t() |
4 | =hdfs_close(A1) |
5 | >env(orders,A4) |
JDBC接口可以方便地集成。加载的数据量一般比较大,通常在应用的初始阶段运行一次,只须将上面的加载过程存为SPL脚本文件,在Java中以存储过程的形式引用脚本文件名:
Class.forName("com.esproc.jdbc.InternalDriver"); Connection conn =DriverManager.getConnection("jdbc:esproc:local://"); CallableStatement statement = conn.prepareCall("{call init()}"); statement.execute();
SPL的计算能力更强大
SPL提供了丰富的计算函数,可以轻松实现日常计算。SPL支持多种高级语法,大量的日期函数和字符串函数,很多用SQL难以表达的计算,用SPL都可以轻松实现,包括复杂的有序计算、集合计算、分步计算、关联计算,以及带流程控制的业务逻辑。
丰富的计算函数。SPL可以轻松实现各类日常计算:
A | B | |
1 | =Orders.find(arg_OrderIDList) | //多键值查找 |
2 | =Orders.select(Amount>1000 && like(Client,\"*S*\")) | //模糊查询 |
3 | = Orders.sort(Client,-Amount) | //排序 |
4 | = Orders.id(Client) | //去重 |
5 | =join(Orders:O,SellerId; Employees:E,EId).new(O.OrderID, O.Client,O.Amount,E.Name,E.Gender,E.Dept) | //关联 |
标准SQL语法。SPL也提供了SQL-92标准的语法,比如分组汇总:
$select year(OrderDate) y,month(OrderDate) m, sum(Amount) s,count(1) c from {Orders} Where Amount>=? and Amount<? ;arg1,arg2
函数选项、层次参数等方便的语法。功能相似的函数可以共用一个函数名,只用函数选项区分差别,比SQL更加灵活方便。比如select函数的基本功能是过滤,如果只过滤出符合条件的第1条记录,可使用选项@1:
T.select@1(Amount>1000)
二分法排序,即对有序数据用二分法进行快速过滤,使用@b:
T.select@b(Amount>1000)
有序分组,即对分组字段有序的数据,将相邻且字段值相同的记录分为一组,使用@b:
T.groups@b(Client;sum(Amount))
函数选项还可以组合搭配,比如:
Orders.select@1b(Amount>1000)
结构化运算函数的参数有些很复杂,比如SQL就需要用各种关键字把一条语句的参数分隔成多个组,但这会动用很多关键字,也使语句结构不统一。SPL使用层次参数简化了复杂参数的表达,即通过分号、逗号、冒号自高而低将参数分为三层:
join(Orders:o,SellerId ; Employees:e,EId)
更丰富的日期和字符串函数。除了常见函数,比如日期增减、截取字符串,SPL还提供了更丰富的日期和字符串函数,在数量和功能上远远超过了SQL,同样运算时代码更短。比如:
季度增减:elapse@q(“2020-02-27”,-3) //返回2019-05-27
N个工作日之后的日期:workday(date(“2022-01-01”),25) //返回2022-02-04
字符串类函数,判断是否全为数字:isdigit(“12345”) //返回true
取子串前面的字符串:substr@l(“abCDcdef”,“cd”) //返回abCD
按竖线拆成字符串数组:“aa|bb|cc”.split(“|”) //返回[“aa”,“bb”,“cc”]
SPL还支持年份增减、求季度、按正则表达式拆分字符串、拆出SQL的where或select部分、拆出单词、按标记拆HTML等大量函数。
简化有序运算。涉及跨行的有序运算,通常都有一定的难度,比如比上期和同期比。SPL使用"字段[相对位置]"引用跨行的数据,可显著简化代码,还可以自动处理数组越界等特殊情况,比SQL窗口函数更加方便。比如,追加一个计算列rate,计算每条订单的金额增长率:
=T.derive(AMOUNT/AMOUNT[-1]-1: rate)
综合运用位置表达式和有序函数,很多SQL难以实现的有序运算,都可以用SPL轻松解决。比如,根据考勤表,找出连续 4 周每天均出勤达 7 小时的学生:
A | |
1 | =Student.select(DURATION>=7).derive(pdate@w(ATTDATE):w) |
2 | =A1.group@o(SID;~.groups@o(W;count(~):CNT).select(CNT==7).group@i(W-W[-1]!=7).max(~.len()):weeks) |
3 | =A2.select(weeks>=4).(SID) |
简化集合运算,SPL的集合化更加彻底,配合灵活的语法和强大的集合函数,可大幅简化复杂的集合计算。比如,在各部门找出比本部门平均年龄小的员工:
A | |
1 | =Employees.group(DEPT; (a=~.avg(age(BIRTHDAY)),~.select(age(BIRTHDAY)9d0338bd0dbd0c4c345215ce81a38000price[-1],a+1,0)) |
简化关联计算。SPL支持对象引用的形式表达关联,可以通过点号直观地访问关联表,避免使用JOIN导致的混乱繁琐,尤其适合复杂的多层关联和自关联。比如,根据员工表计算女经理的男员工:
=employees.select(gender:"male",dept.manager.gender:"female")
方便的分步计算,SPL集合化更加彻底,可以用变量方便地表达集合,适合多步骤计算,SQL要用嵌套表达的运算,用SPL可以更轻松实现。比如,找出销售额累计占到一半的前n个大客户,并按销售额从大到小排序:
A | B | |
2 | =sales.sort(amount:-1) | /销售额逆序排序,可在SQL中完成 |
3 | =A2.cumulate(amount) | /计算累计序列 |
4 | =A3.m(-1)/2 | /最后的累计即总额 |
5 | =A3.pselect(~>=A4) | /超过一半的位置 |
6 | =A2(to(A5)) | /按位置取值 |
流程控制语法。SPL提供了流程控制语句,配合内置的结构化数据对象,可以方便地实现各类业务逻辑。
分支判断语句:
A | B | |
2 | … | |
3 | if T.AMOUNT>10000 | =T.BONUS=T.AMOUNT*0.05 |
4 | else if T.AMOUNT>=5000 && T.AMOUNT202ad72c7bddd7ccc5032ae98c1b2fbe=2000 && T.AMOUNT<5000 | =T.BONUS=T.AMOUNT*0.02 |
循环语句:
A | B | |
1 | =db=connect("db") | |
2 | =T=db.query@x("select * from sales where SellerID=? order by OrderDate",9) | |
3 | for T | =A3.BONUS=A3.BONUS+A3.AMOUNT*0.01 |
4 | =A3.CLIENT=CONCAT(LEFT(A3.CLIENT,4), " co.,ltd.") | |
5 | … |
与Java的循环类似,SPL还可用break关键字跳出(中断)当前循环体,或用next关键字跳过(忽略)本轮循环,不展开说了。
计算性能更好。在内存计算方面,除了常规的主键和索引外,SPL还提供了很多高性能的数据结构和算法支持,比大多数使用SQL的内存数据库性能好得多,且占用内存更少,比如预关联技术、并行计算、指针式复用。
SPL支持JDBC接口,代码可外置于Java,耦合性更低,也可内置于Java,调用更简单。SPL支持解释执行和热切换,代码方便移植和管理运营,支持内外存混合计算。
外置代码耦合性低。SPL代码可外置于Java,通过文件名被调用,既不依赖数据库,也不依赖Java,业务逻辑和前端代码天然解耦。
对于较短的计算,也可以像SQLite那样合并成一句,写在Java代码中:
Class.forName("com.esproc.jdbc.InternalDriver"); Connection conn =DriverManager.getConnection("jdbc:esproc:local://"); Statement statement = conn.createStatement(); String arg1="1000"; String arg2="2000" ResultSet result = statement.executeQuery(=Orders.select(Amount>="+arg1+" && Amount<"+arg2+"). groups(year(OrderDate):y,month(OrderDate):m; sum(Amount):s,count(1):c)");
解释执行和热切换。业务逻辑数量多,复杂度高,变化是常态。良好的系统构架,应该有能力应对变化的业务逻辑。SPL是基于Java的解释型语言,无须编译就能执行,脚本修改后立即生效,支持不停机的热切换,适合应对变化的业务逻辑。
方便代码移植。SPL通过数据源名从数据库取数,如果需要移植,只要改动配置文件中的数据源配置信息,而不必修改SPL代码。SPL支持动态数据源,可通过参数或宏切换不同的数据库,从而进行更方便的移植。为了进一步增强可移植性,SPL还提供了与具体数据库无关的标准SQL语法,使用sqltranslate函数可将标准SQL转为主流方言SQL,仍然通过query函数执行。
方便管理运营。由于支持库外计算,代码可被第三方工具管理,方便团队协作;SPL脚本可以按文件目录进行存放,方便灵活,管理成本低;SPL对数据库的权限要求类似Java,不影响数据安全。
内外存混合计算。有些数据太大,无法放入内存,但又要与内存表共同计算,这种情况可利用SPL实现内外存混合计算。比如,主表orders已加载到内存,大明细表orderdetail是文本文件,下面进行主表和明细表的关联计算:
A | |
1 | =file("orderdetail.txt").cursor@t() |
2 | =orders.cursor() |
3 | =join(A1:detail,orderid ; A2:main,orderid) |
4 | =A3.groups(year(main.orderdate):y; sum(detail.amount):s) |
SQLite使用简单方便,但数据源加载繁琐,计算能力不足。SPL架构也非常简单,并直接支持更多数据源。SPL计算能力强大,提供了丰富的计算函数,可以轻松实现SQL不擅长的复杂计算。SPL还提供多种优化体系结构的手段,代码既可外置也可内置于Java,支持解释执行和热切换,方便移植和管理运营,并支持内外存混合计算。
Das obige ist der detaillierte Inhalt vonJava-eingebettete Daten-Engine von SQLite bis SPL-Beispielanalyse. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!