Heim >Backend-Entwicklung >Python-Tutorial >Was sind die am häufigsten verwendeten Tools für die Python-Visualisierung?
Matplotlib ist eine Zeichenbibliothek für Python, die hochwertige Liniendiagramme, Streudiagramme, Säulendiagramme, Balkendiagramme usw. zeichnen kann. Es ist auch die Basis für viele andere Visualisierungsbibliotheken.
import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 10, 100) y = np.sin(x) plt.plot(x, y) plt.show()
Seaborn ist eine auf Matplotlib basierende Python-Datenvisualisierungsbibliothek, die speziell zum Zeichnen statistischer Grafiken wie Heatmaps, Violinplots, Liniendiagramme mit Fehlerbalken usw. verwendet wird.
import seaborn as sns import pandas as pd df = pd.read_csv('data.csv') sns.boxplot(x='day', y='total_bill', data=df)
Plotly ist eine interaktive Datenvisualisierungsbibliothek, die hochwertige Liniendiagramme, Streudiagramme, 3D-Grafiken und mehr zeichnen kann. Es unterstützt mehrere Programmiersprachen wie Python, R, JavaScript und mehr.
import plotly.graph_objs as go import numpy as np x = np.linspace(0, 10, 100) y = np.sin(x) fig = go.Figure(data=go.Scatter(x=x, y=y)) fig.show()
Bokeh ist eine interaktive Datenvisualisierungsbibliothek, die auch mehrere Programmiersprachen wie Python, R, JavaScript und mehr unterstützt. Es kann hochwertige Liniendiagramme, Streudiagramme, Säulendiagramme, Balkendiagramme und mehr zeichnen.
from bokeh.plotting import figure, show import numpy as np x = np.linspace(0, 10, 100) y = np.sin(x) p = figure(title='Sine Wave') p.line(x, y, legend_label='Sine') show(p)
Altair ist eine auf Vega-Lite basierende Python-Visualisierungsbibliothek, mit der Sie schnell und einfach hochwertige Liniendiagramme, Streudiagramme, Histogramme und mehr zeichnen können.
import altair as alt import pandas as pd df = pd.read_csv('data.csv') alt.Chart(df).mark_bar().encode( x='year', y='sales', color='region' )
ggplot ist eine Python-Visualisierungsbibliothek, die auf der ggplot2-Bibliothek in der R-Sprache basiert und hochwertige Streudiagramme, Histogramme, Boxplots usw. zeichnen kann.
from ggplot import * import pandas as pd df = pd.read_csv('data.csv') ggplot(df, aes(x='date', y='value', color='variable')) + \ geom_line() + \ theme_bw()
Holoviews ist eine Python-Visualisierungsbibliothek, die interaktive Datenvisualisierungen erstellen kann und mehrere Arten von Visualisierungsgrafiken unterstützt, wie z. B. Liniendiagramme, Streudiagramme, Balkendiagramme, Heatmaps usw.
import holoviews as hv import numpy as np x = np.linspace(0, 10, 100) y = np.sin(x) hv.extension('bokeh') hv.Curve((x, y))
Plotnine ist eine Visualisierungsbibliothek, die auf der ggplot2-Bibliothek von Python basiert und hochwertige Datenvisualisierungsgrafiken wie Streudiagramme, Histogramme, Liniendiagramme und mehr erstellen kann.
from plotnine import * import pandas as pd df = pd.read_csv('data.csv') (ggplot(df, aes(x='year', y='sales', fill='region')) + geom_bar(stat='identity', position='dodge'))
Wordcloud ist eine Python-Bibliothek zum Generieren von Wortwolken, mit der häufig vorkommende Wörter im Text grafisch dargestellt werden können.
from wordcloud import WordCloud import matplotlib.pyplot as plt text = "Python is a high-level programming language" wordcloud = WordCloud().generate(text) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show()
Networkx ist eine Python-Bibliothek zum Erstellen, Bearbeiten und Visualisieren komplexer Netzwerke. Es unterstützt die Erstellung vieler Arten von Netzwerkstrukturen, wie z. B. gerichtete Graphen, ungerichtete Graphen, gewichtete Graphen und mehr.
import networkx as nx import matplotlib.pyplot as plt G = nx.DiGraph() G.add_edge('A', 'B') G.add_edge('B', 'C') G.add_edge('C', 'D') G.add_edge('D', 'A') pos = nx.spring_layout(G) nx.draw_networkx_nodes(G, pos, node_size=500) nx.draw_networkx_edges(G, pos) nx.draw_networkx_labels(G, pos) plt.axis('off') plt.show()
Das obige ist der detaillierte Inhalt vonWas sind die am häufigsten verwendeten Tools für die Python-Visualisierung?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!