Heim >Backend-Entwicklung >Python-Tutorial >So lösen Sie das Thread-Pool-Problem von Pythons ThreadPoolExecutor
Python
verfügt bereits über das threading
-Modul. Warum benötigen Sie einen Thread-Pool? Python
中已经有了threading
模块,为什么还需要线程池呢,线程池又是什么东西呢?
以爬虫为例,需要控制同时爬取的线程数,例子中创建了20个线程,而同时只允许3个线程在运行,但是20个线程都需要创建和销毁,线程的创建是需要消耗系统资源的,有没有更好的方案呢?
其实只需要三个线程就行了,每个线程各分配一个任务,剩下的任务排队等待,当某个线程完成了任务的时候,排队任务就可以安排给这个线程继续执行。
这就是线程池的思想(当然没这么简单),但是自己编写线程池很难写的比较完美,还需要考虑复杂情况下的线程同步,很容易发生死锁。
从Python3.2
开始,标准库为我们提供了concurrent.futures
模块,它提供了ThreadPoolExecutor
和ProcessPoolExecutor
两个类,实现了对threading
和multiprocessing
的进一步抽象(这里主要关注线程池),不仅可以帮我们自动调度线程,还可以做到:
主线程可以获取某一个线程(或者任务的)的状态,以及返回值。
当一个线程完成的时候,主线程能够立即知道。
让多线程和多进程的编码接口一致。
from concurrent.futures import ThreadPoolExecutor import time # 参数times用来模拟网络请求的时间 def get_html(times): time.sleep(times) print("get page {}s finished".format(times)) return times executor = ThreadPoolExecutor(max_workers=2) # 通过submit函数提交执行的函数到线程池中,submit函数立即返回,不阻塞 task1 = executor.submit(get_html, (3)) task2 = executor.submit(get_html, (2)) # done方法用于判定某个任务是否完成 print(task1.done()) # cancel方法用于取消某个任务,该任务没有放入线程池中才能取消成功 print(task2.cancel()) time.sleep(4) print(task1.done()) # result方法可以获取task的执行结果 print(task1.result()) # 执行结果 # False # 表明task1未执行完成 # False # 表明task2取消失败,因为已经放入了线程池中 # get page 2s finished # get page 3s finished # True # 由于在get page 3s finished之后才打印,所以此时task1必然完成了 # 3 # 得到task1的任务返回值
ThreadPoolExecutor构造实例的时候,传入max_workers参数来设置线程池中最多能同时运行的线程数目。
使用submit函数来提交线程需要执行的任务(函数名和参数)到线程池中,并返回该任务的句柄(类似于文件、画图),注意submit()不是阻塞的,而是立即返回。
通过submit函数返回的任务句柄,能够使用done()方法判断该任务是否结束。上面的例子可以看出,由于任务有2s的延时,在task1提交后立刻判断,task1还未完成,而在延时4s之后判断,task1就完成了。
使用cancel()方法可以取消提交的任务,如果任务已经在线程池中运行了,就取消不了。这个例子中,线程池的大小设置为2,任务已经在运行了,所以取消失败。如果改变线程池的大小为1,那么先提交的是task1,task2还在排队等候,这是时候就可以成功取消。
使用result()方法可以获取任务的返回值。查看内部代码,发现这个方法是阻塞的。
上面虽然提供了判断任务是否结束的方法,但是不能在主线程中一直判断啊。
有时候我们是得知某个任务结束了,就去获取结果,而不是一直判断每个任务有没有结束。
这是就可以使用as_completed
方法一次取出所有任务的结果。
from concurrent.futures import ThreadPoolExecutor, as_completed import time # 参数times用来模拟网络请求的时间 def get_html(times): time.sleep(times) print("get page {}s finished".format(times)) return times executor = ThreadPoolExecutor(max_workers=2) urls = [3, 2, 4] # 并不是真的url all_task = [executor.submit(get_html, (url)) for url in urls] for future in as_completed(all_task): data = future.result() print("in main: get page {}s success".format(data)) # 执行结果 # get page 2s finished # in main: get page 2s success # get page 3s finished # in main: get page 3s success # get page 4s finished # in main: get page 4s success
as_completed()
方法是一个生成器,在没有任务完成的时候,会阻塞,在有某个任务完成的时候,会yield
这个任务,就能执行for循环下面的语句,然后继续阻塞住,循环到所有的任务结束。
从结果也可以看出,先完成的任务会先通知主线程。
除了上面的as_completed
方法,还可以使用executor.map
方法,但是有一点不同。
from concurrent.futures import ThreadPoolExecutor import time # 参数times用来模拟网络请求的时间 def get_html(times): time.sleep(times) print("get page {}s finished".format(times)) return times executor = ThreadPoolExecutor(max_workers=2) urls = [3, 2, 4] # 并不是真的url for data in executor.map(get_html, urls): print("in main: get page {}s success".format(data)) # 执行结果 # get page 2s finished # get page 3s finished # in main: get page 3s success # in main: get page 2s success # get page 4s finished # in main: get page 4s success
使用map
方法,无需提前使用submit
方法,map
方法与python
标准库中的map
含义相同,都是将序列中的每个元素都执行同一个函数。
上面的代码就是对urls
的每个元素都执行get_html
函数,并分配各线程池。可以看到执行结果与上面的as_completed
方法的结果不同,输出顺序和urls
列表的顺序相同,就算2s的任务先执行完成,也会先打印出3s的任务先完成,再打印2s的任务完成。
wait
方法可以让主线程阻塞,直到满足设定的要求。
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED import time # 参数times用来模拟网络请求的时间 def get_html(times): time.sleep(times) print("get page {}s finished".format(times)) return times executor = ThreadPoolExecutor(max_workers=2) urls = [3, 2, 4] # 并不是真的url all_task = [executor.submit(get_html, (url)) for url in urls] wait(all_task, return_when=ALL_COMPLETED) print("main") # 执行结果 # get page 2s finished # get page 3s finished # get page 4s finished # main
wait
方法接收3个参数,等待的任务序列、超时时间以及等待条件。
等待条件return_when
默认为ALL_COMPLETED
,表明要等待所有的任务都结束。
可以看到运行结果中,确实是所有任务都完成了,主线程才打印出main
。
等待条件还可以设置为FIRST_COMPLETED
,表示第一个任务完成就停止等待。
cocurrent.future
模块中的future
Nehmen Sie einen Crawler. Sie müssen die Anzahl der gleichzeitig gecrawlten Threads steuern. Im Beispiel werden jedoch nur 3 Threads gleichzeitig ausgeführt Gibt es eine bessere Lösung, um Threads zu erstellen und zu zerstören?
Python3.2
stellt uns die Standardbibliothek das Modul concurrent.futures
zur Verfügung, das ThreadPoolExecutor
und ProcessPoolExecutorZwei Klassen implementieren eine weitere Abstraktion von <code>threading
und multiprocessing
(der Schwerpunkt liegt hier auf Thread-Pools). Sie können uns nicht nur dabei helfen, Threads automatisch zu planen, sondern auch: 🎜as_completed
zum gleichzeitigen Abrufen aller Aufgaben. 🎜rrreee🎜Die as_completed()
-Methode ist ein Generator. Wenn keine Aufgabe abgeschlossen ist, wird sie ausgegeben
kann die Anweisungen unterhalb der for-Schleife ausführen und dann weiter blockieren, bis alle Aufgaben abgeschlossen sind. 🎜🎜Aus den Ergebnissen ist auch ersichtlich, dass 🎜die zuerst erledigte Aufgabe zuerst dem Hauptthread mitgeteilt wird🎜. 🎜as_completed
können Sie auch die Methode executor.map
verwenden, es gibt jedoch einen kleinen Unterschied. 🎜rrreee🎜Verwenden Sie die Methode map
, ohne zuvor die Methode submit
zu verwenden. Die Methode map
ist dieselbe wie die Methode pythoncode> Standardbibliothek. code>map
hat die gleiche Bedeutung, sie führt die gleiche Funktion für jedes Element in der Sequenz aus. 🎜🎜Der obige Code besteht darin, die Funktion get_html
für jedes Element von urls
auszuführen und jeden Thread-Pool zuzuweisen. Sie können sehen, dass sich das Ausführungsergebnis vom Ergebnis der obigen Methode as_completed
unterscheidet. Die Ausgabereihenfolge ist dieselbe wie die Reihenfolge der 🎜urls
🎜list Die 2er-Aufgabe wird zuerst abgeschlossen. Zuerst wird die 3er-Aufgabe gedruckt und dann wird die 2er-Aufgabe gedruckt. 🎜wait
-Methode kann den Hauptthread blockieren, bis die festgelegten Anforderungen erfüllt sind. 🎜rrreee🎜Die wait
-Methode empfängt 3 Parameter, die Warte-Task-Sequenz, die Timeout-Zeit und die Wartebedingungen. 🎜🎜Die Wartebedingung return_when
ist standardmäßig ALL_COMPLETED
und zeigt an, dass Sie warten möchten, bis alle Aufgaben beendet sind. 🎜🎜Sie können in den laufenden Ergebnissen sehen, dass alle Aufgaben tatsächlich abgeschlossen sind und der Hauptthread main
ausgibt. 🎜🎜Die Wartebedingung kann auch auf FIRST_COMPLETED
gesetzt werden, was bedeutet, dass das Warten endet, wenn die erste Aufgabe abgeschlossen ist. 🎜🎜Quellcode-Analyse🎜🎜future
im Modul cocurrent.future
bedeutet zukünftiges Objekt, das als 🎜eine in der Zukunft abgeschlossene Operation🎜 verstanden werden kann, bei der es sich um asynchrone Grundlagen handelt der Programmierung. 🎜Nach dem Thread-Pool submit()
wird das future
-Objekt zurückgegeben. Die Aufgabe ist bei der Rückgabe nicht abgeschlossen, wird aber in Zukunft abgeschlossen. submit()
之后,返回的就是这个future
对象,返回的时候任务并没有完成,但会在将来完成。
也可以称之为task的返回容器,这个里面会存储task的结果和状态。
那ThreadPoolExecutor
内部是如何操作这个对象的呢?
下面简单介绍ThreadPoolExecutor
的部分代码:
init
方法中主要重要的就是任务队列和线程集合,在其他方法中需要使用到。
submit
中有两个重要的对象,_base.Future()
和_WorkItem()
对象,_WorkItem()
对象负责运行任务和对future
对象进行设置,最后会将future
对象返回,可以看到整个过程是立即返回的,没有阻塞。
这个方法的含义很好理解,主要是创建指定的线程数。但是实现上有点难以理解,比如线程执行函数中的weakref.ref,涉及到了弱引用等概念,留待以后理解。
_WorkItem
对象的职责就是执行任务和设置结果。这里面主要复杂的还是self.future.set_result(result)
kann auch als Rückgabecontainer der Aufgabe bezeichnet werden, in dem die Ergebnisse und der Status von Aufgabe
Wie betreibt ThreadPoolExecutor
dieses Objekt intern?
ThreadPoolExecutor
: 1.init-Methode Das Wichtigste in der init
-Methode ist die Aufgabenwarteschlange und Thread-Sammlung, die in anderen Methoden benötigt werden.
submit
, _base.Future()
und _WorkItem()
Objekte, _WorkItem () Das
-Objekt ist für die Ausführung von Aufgaben und das Festlegen des future
-Objekts verantwortlich. Schließlich wird das future
-Objekt zurückgegeben. Sie können sehen, dass der gesamte Prozess zurückgegeben wird sofort ohne Blockierung. 🎜🎜🎜🎜3 .adjust_thread_count Methode 🎜🎜Die Bedeutung dieser Methode ist leicht zu verstehen, sie erstellt hauptsächlich die angegebene Anzahl von Threads. Die Implementierung ist jedoch etwas schwer zu verstehen. Beispielsweise beinhaltet die Funktion „weakref.ref“ in der Thread-Ausführung Konzepte wie schwache Referenzen, die später verstanden werden müssen. 🎜🎜🎜🎜4 ._WorkItem Die Aufgabe des Objekts 🎜🎜_WorkItem
besteht darin, Aufgaben auszuführen und Ergebnisse festzulegen. Die Hauptkomplexität hier ist self.future.set_result(result)
🎜. 🎜🎜🎜🎜🎜🎜5. Thread-Ausführungsfunktion – _worker🎜🎜Dies ist der Funktionseintrag, der angegeben wird, wenn der Thread-Pool einen Thread erstellt und ihn ausführt, aber der erste Parameter des Funktion ist noch nicht ganz klar. Heben Sie sich das für später auf. 🎜🎜🎜🎜Das obige ist der detaillierte Inhalt vonSo lösen Sie das Thread-Pool-Problem von Pythons ThreadPoolExecutor. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!