


6 empfohlene Python-Frameworks für den Aufbau erklärbarer künstlicher Intelligenzsysteme (XAI)
KI ist wie eine Black Box, die selbstständig Entscheidungen treffen kann, aber die Leute wissen nicht warum. Erstellen Sie ein KI-Modell, geben Sie Daten ein und geben Sie dann die Ergebnisse aus. Ein Problem besteht jedoch darin, dass wir nicht erklären können, warum die KI zu einer solchen Schlussfolgerung gelangt. Es ist notwendig, die Gründe dafür zu verstehen, wie eine KI zu einer bestimmten Schlussfolgerung gelangt, anstatt einfach ein Ergebnis zu akzeptieren, das ohne Kontext oder Erklärung ausgegeben wird.
Interpretierbarkeit soll den Menschen helfen, Folgendes zu verstehen:
- Wie lernt man?
- Was lernt man? # 🎜 🎜#Warum wird eine solche Entscheidung für eine bestimmte Eingabe getroffen?
- Ist die Entscheidung zuverlässig?
# install with pippip install shap# install with condaconda install -c conda-forge shap
pip install lime
InterpretML ist ein Open-Source-Python-Paket, das Forschern Algorithmen zur Interpretierbarkeit maschinellen Lernens bereitstellt. InterpretML unterstützt das Training interpretierbarer Modelle (Glassbox) sowie die Interpretation vorhandener ML-Pipelines (Blackbox).
InterpretML demonstriert zwei Arten der Interpretierbarkeit: Glassbox-Modelle – Modelle für maschinelles Lernen, die auf Interpretierbarkeit ausgelegt sind (z. B. lineare Modelle, Regellisten, verallgemeinerte additive Modelle) und Black-Box-Interpretierbarkeitstechniken – für die Interpretierbarkeit bestehender Systeme (z. B. partielle Abhängigkeiten, LIME). Mithilfe einer einheitlichen API und der Kapselung mehrerer Methoden sowie einer integrierten, erweiterbaren Visualisierungsplattform ermöglicht dieses Paket Forschern den einfachen Vergleich von Interpretierbarkeitsalgorithmen. InterpretML enthält auch die erste Implementierung der Erklärung Boosting Machine, ein leistungsstarkes, interpretierbares Glassbox-Modell, das genauso genau sein kann wie viele Black-Box-Modelle.
Lokale interaktive Erklärungsdarstellung, erstellt mit InterpretML
Globale Erklärungsdarstellung, erstellt mit InterpretML
ELI5
ELI5 ist eine Python-Bibliothek, die dabei helfen kann, Klassifikatoren für maschinelles Lernen zu debuggen und ihre Vorhersagen zu interpretieren. Die folgenden Frameworks für maschinelles Lernen werden derzeit unterstützt:
- scikit-learn
- Funktioniert weltweit;
- Untersuchen Sie die individuellen Vorhersagen eines Modells und veranschaulichen Sie, wie das Modell eine solche Entscheidung treffen würde.
- Verwenden Sie die ELI5-Bibliothek, um globale Gewichtungen zu generieren.
Verwenden Sie die ELI5-Bibliothek, um lokale Gewichtungen zu generieren Salesforce. Es bietet eine umfassende Palette erklärbarer künstlicher Intelligenz und erklärbarer maschineller Lernfunktionen zur Lösung mehrerer Probleme, die in der Praxis Beurteilung bei der Generierung von Modellen für maschinelles Lernen erfordern. Für Datenwissenschaftler und ML-Forscher, die verschiedene Arten von Daten, Modellen und Erklärungstechniken in verschiedenen Phasen des ML-Prozesses interpretieren müssen, hofft OmniXAI, eine umfassende Bibliothek aus einer Hand bereitzustellen, die erklärbare KI einfach macht.
Das Folgende ist ein Vergleich zwischen dem, was OmniXAI bietet, und anderen ähnlichen Bibliotheken
Das obige ist der detaillierte Inhalt von6 empfohlene Python-Frameworks für den Aufbau erklärbarer künstlicher Intelligenzsysteme (XAI). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erforschen der inneren Funktionsweise von Sprachmodellen mit Gemma -Umfang Das Verständnis der Komplexität von KI -Sprachmodellen ist eine bedeutende Herausforderung. Die Veröffentlichung von Gemma Scope durch Google, ein umfassendes Toolkit, bietet Forschern eine leistungsstarke Möglichkeit, sich einzuschütteln

Erschließung des Geschäftserfolgs: Ein Leitfaden zum Analyst für Business Intelligence -Analyst Stellen Sie sich vor, Rohdaten verwandeln in umsetzbare Erkenntnisse, die das organisatorische Wachstum vorantreiben. Dies ist die Macht eines Business Intelligence -Analysts (BI) - eine entscheidende Rolle in Gu

SQL -Änderungstabellanweisung: Dynamisches Hinzufügen von Spalten zu Ihrer Datenbank Im Datenmanagement ist die Anpassungsfähigkeit von SQL von entscheidender Bedeutung. Müssen Sie Ihre Datenbankstruktur im laufenden Flug anpassen? Die Änderungstabelleerklärung ist Ihre Lösung. Diese Anleitung Details Hinzufügen von Colu

Einführung Stellen Sie sich ein lebhaftes Büro vor, in dem zwei Fachleute an einem kritischen Projekt zusammenarbeiten. Der Business Analyst konzentriert sich auf die Ziele des Unternehmens, die Ermittlung von Verbesserungsbereichen und die strategische Übereinstimmung mit Markttrends. Simu

Excel -Datenzählung und -analyse: Detaillierte Erläuterung von Count- und Counta -Funktionen Eine genaue Datenzählung und -analyse sind in Excel kritisch, insbesondere bei der Arbeit mit großen Datensätzen. Excel bietet eine Vielzahl von Funktionen, um dies zu erreichen. Die Funktionen von Count- und Counta sind wichtige Instrumente zum Zählen der Anzahl der Zellen unter verschiedenen Bedingungen. Obwohl beide Funktionen zum Zählen von Zellen verwendet werden, sind ihre Designziele auf verschiedene Datentypen ausgerichtet. Lassen Sie uns mit den spezifischen Details der Count- und Counta -Funktionen ausgrenzen, ihre einzigartigen Merkmale und Unterschiede hervorheben und lernen, wie Sie sie in der Datenanalyse anwenden. Überblick über die wichtigsten Punkte Graf und Cou verstehen

Die KI -Revolution von Google Chrome: Eine personalisierte und effiziente Browsing -Erfahrung Künstliche Intelligenz (KI) verändert schnell unser tägliches Leben, und Google Chrome leitet die Anklage in der Web -Browsing -Arena. Dieser Artikel untersucht die Exciti

Impacting Impact: Das vierfache Endergebnis Zu lange wurde das Gespräch von einer engen Sicht auf die Auswirkungen der KI dominiert, die sich hauptsächlich auf das Gewinn des Gewinns konzentrierte. Ein ganzheitlicherer Ansatz erkennt jedoch die Vernetzung von BU an

Die Dinge bewegen sich stetig zu diesem Punkt. Die Investition, die in Quantendienstleister und Startups einfließt, zeigt, dass die Industrie ihre Bedeutung versteht. Und eine wachsende Anzahl realer Anwendungsfälle entsteht, um seinen Wert zu demonstrieren


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

Dreamweaver Mac
Visuelle Webentwicklungstools