Heim > Artikel > Backend-Entwicklung > Sieben praktische Python-Automatisierungscodes – hören Sie auf, das Rad neu zu erfinden!
Es gibt ein berühmtes Sprichwort über Python: Erfinde das Rad nicht neu.
Aber es gibt drei Probleme:
1. Du weißt nicht, welche Räder gebaut wurden und welches für dich geeignet ist. Es gibt mehr als 400 berühmte Räder mit Vor- und Nachnamen, ganz zu schweigen von den selbst hergestellten Rädern ohne Vor- und Nachnamen.
2. Es stimmt, dass wir nicht das Rad neu erfinden, aber wir erfinden das Auto neu. Einschließlich Hunderter Codezeilen, die von vielen Meistern geschrieben wurden, um eine ausgereifte Funktion von Excel selbst zu lösen.
3. Viele Leute nutzen es, um Bilder, Daten, Bilder, Videos und Wettervorhersagen für ihre eigene Unterhaltung aufzunehmen. Welchen Nutzen haben Big Data nach der Erfassung? Beispielsweise verkauft sich ein bestimmtes Bier schnell, aber wie geht es weiter? Zum Beispiel hat ein bestimmter Film viele Einspielergebnisse, und was dann?
Das Folgende ist der Code, der mit Python 3.6.4 debuggt wurde und mit allen geteilt wird:
1. Schnappen Sie sich zwei Chatbots, die miteinander chatten
3 Autor der Tang-Poesie ist Li Bai oder Du Fu
4. Schreibe automatisch eine Selbstbewertung
7. Erstelle Zhihu-Bilder mit nur 30 Zeilen Code
from selenium import webdriver import time import urllib.request driver = webdriver.Chrome() driver.maximize_window() driver.get("https://www.zhihu.com/question/29134042") i = 0 while i < 10: driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") time.sleep(2) try: driver.find_element_by_css_selector('button.QuestionMainAction').click() print("page" + str(i)) time.sleep(1) except: break result_raw = driver.page_source content_list = re.findall("img src="(.+?)" ", str(result_raw)) n = 0 while n < len(content_list): i = time.time() local = (r"%s.jpg" % (i)) urllib.request.urlretrieve(content_list[n], local) print("编号:" + str(i)) n = n + 1
② Wenn Sie nichts zu tun haben, hören Sie zwei Chatbots zu, die miteinander chatten
from time import sleep import requests s = input("请主人输入话题:") while True: resp = requests.post("http://www.tuling123.com/openapi/api",data={"key":"4fede3c4384846b9a7d0456a5e1e2943", "info": s, }) resp = resp.json() sleep(1) print('小鱼:', resp['text']) s = resp['text'] resp = requests.get("http://api.qingyunke.com/api.php", {'key': 'free', 'appid':0, 'msg': s}) resp.encoding = 'utf8' resp = resp.json() sleep(1) print('菲菲:', resp['content']) #网上还有一个据说智商比较高的小i机器人,用爬虫的功能来实现一下: import urllib.request import re while True: x = input("主人:") x = urllib.parse.quote(x) link = urllib.request.urlopen( "http://nlp.xiaoi.com/robot/webrobot?&callback=__webrobot_processMsg&data=%7B%22sessionId%22%3A%22ff725c236e5245a3ac825b2dd88a7501%22%2C%22robotId%22%3A%22webbot%22%2C%22userId%22%3A%227cd29df3450745fbbdcf1a462e6c58e6%22%2C%22body%22%3A%7B%22content%22%3A%22" + x + "%22%7D%2C%22type%22%3A%22txt%22%7D") html_doc = link.read().decode() reply_list = re.findall(r'"content":"(.+?)\r\n"', html_doc) print("小i:" + reply_list[-1])
③ Analysieren Sie, ob der Autor der Tang-Gedichte Li Bai oder Du Fu ist
import jieba from nltk.classify import NaiveBayesClassifier # 需要提前把李白的诗收集一下,放在libai.txt文本中。 text1 = open(r"libai.txt", "rb").read() list1 = jieba.cut(text1) result1 = " ".join(list1) # 需要提前把杜甫的诗收集一下,放在dufu.txt文本中。 text2 = open(r"dufu.txt", "rb").read() list2 = jieba.cut(text2) result2 = " ".join(list2) # 数据准备 libai = result1 dufu = result2 # 特征提取 def word_feats(words): return dict([(word, True) for word in words]) libai_features = [(word_feats(lb), 'lb') for lb in libai] dufu_features = [(word_feats(df), 'df') for df in dufu] train_set = libai_features + dufu_features # 训练决策 classifier = NaiveBayesClassifier.train(train_set) # 分析测试 sentence = input("请输入一句你喜欢的诗:") print("n") seg_list = jieba.cut(sentence) result1 = " ".join(seg_list) words = result1.split(" ") # 统计结果 lb = 0 df = 0 for word in words: classResult = classifier.classify(word_feats(word)) if classResult == 'lb': lb = lb + 1 if classResult == 'df': df = df + 1 # 呈现比例 x = float(str(float(lb) / len(words))) y = float(str(float(df) / len(words))) print('李白的可能性:%.2f%%' % (x * 100)) print('杜甫的可能性:%.2f%%' % (y * 100))
④ Generieren Sie nach dem Zufallsprinzip Lottoscheine um 7 aus 35 auszuwählen
import random temp = [i + 1 for i in range(35)] random.shuffle(temp) i = 0 list = [] while i < 7: list.append(temp[i]) i = i + 1 list.sort() print('33[0;31;;1m') print(*list[0:6], end="") print('33[0;34;;1m', end=" ") print(list[-1])
import random import xlrd ExcelFile = xlrd.open_workbook(r'test.xlsx') sheet = ExcelFile.sheet_by_name('Sheet1') i = [] x = input("请输入具体事件:") y = int(input("老师要求的字数:")) while len(str(i)) < y * 1.2: s = random.randint(1, 60) rows = sheet.row_values(s) i.append(*rows) print(" "*8+"检讨书"+"n"+"老师:") print("我不应该" + str(x)+",", *i) print("再次请老师原谅!") ''' 以下是样稿: 请输入具体事件:抽烟 老师要求的字数:200 检讨书 老师: 我不应该抽烟, 学校一开学就三令五申,一再强调校规校纪,提醒学生不要违反校规,可我却没有把学校和老师的话放在心上,没有重视老师说的话,没有重视学校颁布的重要事项,当成了耳旁风,这些都是不应该的。同时也真诚地希望老师能继续关心和支持我,并却对我的问题酌情处理。 无论在学习还是在别的方面我都会用校规来严格要求自己,我会把握这次机会。 但事实证明,仅仅是热情投入、刻苦努力、钻研学业是不够的,还要有清醒的政治头脑、大局意识和纪律观念,否则就会在学习上迷失方向,使国家和学校受损失。 再次请老师原谅! '''
from time import sleep from PIL import ImageGrab m = int(input("请输入想抓屏几分钟:")) m = m * 60 n = 1 while n < m: sleep(0.02) im = ImageGrab.grab() local = (r"%s.jpg" % (n)) im.save(local, 'jpeg') n = n + 1
Das obige ist der detaillierte Inhalt vonSieben praktische Python-Automatisierungscodes – hören Sie auf, das Rad neu zu erfinden!. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!