


Debuggen von Pytorch-Speicherleckproblemen mithilfe von Kontextdekoratoren
Dekoratoren sind spezifische Implementierungen von Python-Kontextmanagern. In diesem Artikel wird die Verwendung anhand eines Beispiels für das Debuggen einer Pytorch-GPU veranschaulicht. Auch wenn es nicht in jeder Situation funktioniert, empfand ich sie als sehr nützlich.
Probleme mit Speicherlecks beheben
Es gibt viele Möglichkeiten, Speicherlecks zu beheben. In diesem Artikel wird eine nützliche Methode zum Identifizieren problematischer Zeilen in Ihrem Code demonstriert. Diese Methode kann dabei helfen, den spezifischen Standort präzise zu finden.
Manuelles Debuggen Zeile für Zeile
Wenn Sie auf ein Problem stoßen, besteht eine klassische und häufig verwendete Methode darin, den Debugger zur zeilenweisen Überprüfung zu verwenden, wie im folgenden Beispiel:
- Finden Sie in der Suchmaschine, wie man berechnet Alle Tensoren in Pytorch Gesamtcode-Snippet, zum Beispiel: tensor-counter-snippet
- Setzen Sie Haltepunkte im Code
- Verwenden Sie tensor-counter-snippet, um Gesamttensorstatistiken zu erhalten
- Verwenden Sie den Debugger, um den nächsten Schritt auszuführen
- Führen Sie den Tensor erneut aus - Counter-Snippet und prüfen, ob die Tensoranzahl erhöht wird
- Wiederholen Sie die obigen Schritte
Es funktioniert, aber eine solche Operation klingt umständlich. Wir können es in eine Funktion kapseln, die bei Bedarf aufgerufen werden kann, sodass der vorhandene Code fast nicht geändert werden muss, was uns dazu veranlasst, die Funktion des Dekorators einzuführen.
Python-Dekoratoren
Dekoratoren können in jeden Teil des Codes eingebunden werden. Hier verwenden wir den Dekorator, um zu prüfen, ob zusätzliche Tensoren vorhanden sind. Darüber hinaus benötigen wir auch einen Zähler, da die Anzahl der Tensoren vor und nach der Ausführung berechnet werden muss. Das Muster sieht so aus:
def memleak_wrapper(func): def wrap(*args, **kwargs): print("num tensors start is ...") out = func(*args, **kwargs) print("num tensors end is ...") return out return wrap@memleak_wrapper def function_to_debug(x): print(f"put line(s) of code here. Input is {x}") out = x + 10 return outout = function_to_debug(x=1000) print(f"out is {out}") #输入类似这样 #num tensors start is ... #put line(s) of code here. Input is 1000 #num tensors end is ... #outis 1010
Um diesen Code auszuführen, müssen wir die Codezeile, die wir überprüfen möchten, in eine Funktion (function_to_debug) einfügen. Dies ist jedoch nicht das Beste, da wir immer noch viel Code manuell einfügen müssen. Die andere Sache ist, dass Sie, wenn der Codeblock mehr als eine Variable generiert, zusätzliche Lösungen finden müssen, um diese Downstream-Variablen zu verwenden.
Kontextdekorator
Um das oben genannte Problem zu lösen, können wir den Kontextmanager anstelle des Funktionsdekorators verwenden. Das am häufigsten verwendete Beispiel für einen Kontextmanager ist die Instanziierung eines Kontexts mithilfe der with-Anweisung. Die gebräuchlichste war früher:
with open("file") as f: …
Mit der contextlib-Bibliothek von Python können Python-Benutzer ganz einfach selbst Kontextmanager erstellen. In diesem Artikel werden wir also ContextDecorator verwenden, um die Arbeit abzuschließen, die wir oben mit Decorator versucht haben. Weil es einfacher zu entwickeln und einfacher zu verwenden ist:
from contextlib import ContextDecorator class check_memory_leak_context(ContextDecorator): def __enter__(self): print('Starting') return self def __exit__(self, *exc): print('Finishing') return False
ContextDecorator verfügt über zwei Methoden: enter() und exit(), die aufgerufen werden, wenn wir den Kontext betreten oder verlassen. Der Parameter *exc in __exit__ stellt jede eingehende Ausnahme dar.
Nun nutzen wir es, um das oben genannte Problem zu lösen.
Verwenden Sie ContextDecorator, um Speicherlecks zu finden
Da wir die Gesamtzahl der Tensoren berechnen müssen, kapseln wir den Berechnungsprozess in eine Funktion get_n_tensors(), damit die Anzahl der Tensoren am Anfang und Ende des Kontexts berechnet werden kann :
class check_memory_leak_context(ContextDecorator): def __enter__(self): self.start = get_n_tensors() return self def __exit__(self, *exc): self.end = get_n_tensors() increase = self.end — self.start if increase > 0: print(f”num tensors increased with" f"{self.end — self.start} !”) else: print(”no added tensors”) return False
Wenn es Erhöhungen gibt, drucken Sie diese auf der Konsole aus.
get_n_tensor() verwendet einen Garbage Collector (GC) und ist für Pytorch angepasst, kann aber leicht für andere Bibliotheken geändert werden:
import gc def get_n_tensors(): tensors= [] for obj in gc.get_objects(): try: if (torch.is_tensor(obj) or (hasattr(obj, ‘data’) and torch.is_tensor(obj.data))): tensors.append(obj) except: pass return len(tensors)
Es funktioniert jetzt, wir verwenden dies für jede Codezeile (oder jeden Block) Kontext:
x = arbitrary_operation(x) ... with check_memory_leak_context(): y = x[0].permute(1, 2, 0).cpu().detach().numpy() x = some_harmless_operation() ... x = another_arbitrary_operation(x)
Wenn innerhalb der vom Kontextdekorator umschlossenen Zeile ein neuer Tensor erstellt wird, wird dieser gedruckt.
Zusammenfassung
Dies ist ein sehr gutes Code-Snippet. Sie können es während der Entwicklung in eine separate Datei einfügen. Hier ist der vollständige Code dieses Artikels:
https://gist.github.com/MarkTension /4783697ebd5212ba500cdd829b364338
Abschließend hoffe ich, dass dieser kleine Artikel Ihnen helfen kann zu verstehen, was ein Kontextmanager ist, wie man Kontextdekoratoren verwendet und wie man sie zum Debuggen von Pytorch anwendet.
Das obige ist der detaillierte Inhalt vonDebuggen von Pytorch-Speicherleckproblemen mithilfe von Kontextdekoratoren. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion