


Zero-Shot Learning konzentriert sich auf die Klassifizierung von Kategorien, die während des Trainingsprozesses nicht aufgetreten sind. Zero-Shot-Learning basierend auf semantischer Beschreibung realisiert die Klassifizierung von sichtbaren Klassen (Wissenstransfer von gesehenen Klassen zu unsichtbaren Klassen). Beim herkömmlichen Zero-Shot-Lernen müssen in der Testphase nur unsichtbare Klassen identifiziert werden, während beim verallgemeinerten Zero-Shot-Lernen (GZSL) sowohl sichtbare als auch unsichtbare Klassen identifiziert werden müssen. Seine Bewertungsindikatoren sind die durchschnittliche Genauigkeit sichtbarer Klassen und die durchschnittliche Genauigkeit unsichtbarer Klassen Klassen. Harmonischer Durchschnitt der Genauigkeit.
Eine allgemeine Zero-Shot-Lernstrategie besteht darin, sichtbare Klassenproben und Semantik zu verwenden, um ein bedingtes Generierungsmodell vom semantischen Raum zum visuellen Probenraum zu trainieren, dann unsichtbare Klassensemantik zu verwenden, um Pseudoproben unsichtbarer Klassen zu generieren, und schließlich sichtbare Klassen zu verwenden Klassen Stichproben und Pseudostichproben unsichtbarer Klassen werden zum Trainieren des Klassifizierungsnetzwerks verwendet. Das Erlernen einer guten Zuordnungsbeziehung zwischen zwei Modalitäten (semantische Modalität und visuelle Modalität) erfordert jedoch normalerweise eine große Anzahl von Beispielen (siehe CLIP), was in einer herkömmlichen Zero-Shot-Lernumgebung nicht erreicht werden kann. Daher weicht die visuelle Stichprobenverteilung, die mithilfe der Semantik unsichtbarer Klassen generiert wird, normalerweise von der tatsächlichen Stichprobenverteilung ab, was die folgenden zwei Punkte bedeutet: 1. Die mit dieser Methode erzielte Genauigkeit unsichtbarer Klassen ist begrenzt. 2. Wenn die durchschnittliche Anzahl der pro Klasse generierten Pseudoproben für unsichtbare Klassen der durchschnittlichen Anzahl der Proben für jede Klasse für sichtbare Klassen entspricht, besteht ein großer Unterschied zwischen der Genauigkeit unsichtbarer Klassen und der Genauigkeit sichtbarer Klassen siehe Tabelle 1 unten.
Wir haben festgestellt, dass selbst wenn wir nur die Zuordnung der Semantik zu Kategoriemittelpunkten lernen und den einzelnen Beispielpunkt, dem die unsichtbare Klassensemantik zugeordnet wird, mehrmals kopieren und dann am Klassifikatortraining teilnehmen, Wir können dem generativen Modelleffekt nahe kommen. Dies bedeutet, dass die vom generativen Modell generierten unsichtbaren Pseudo-Stichprobenmerkmale für den Klassifikator relativ homogen sind.
Frühere Methoden berücksichtigen normalerweise die GZSL-Bewertungsmetrik, indem sie eine große Anzahl unsichtbarer Klassen-Pseudostichproben generieren (obwohl eine große Anzahl von Stichproben für die Unterscheidung unsichtbarer Klassen zwischen Klassen nicht hilfreich ist). Es hat sich jedoch gezeigt, dass diese Resampling-Strategie im Bereich des Long-Tail-Lernens dazu führt, dass der Klassifikator bei einigen Merkmalen überpasst, was pseudo-unsichtbar ist und von den tatsächlichen Klassenmerkmalen abweicht. Diese Situation ist der Identifizierung realer Stichproben sichtbarer und unsichtbarer Klassen nicht förderlich. Können wir diese Resampling-Strategie aufgeben und stattdessen den Versatz und die Homogenität der Generierung von Pseudo-Stichproben unsichtbarer Klassen (oder das Klassenungleichgewicht zwischen gesehenen Klassen und unsichtbaren Klassen) als induktive Verzerrung nutzen? Was ist mit dem Klassifikatorlernen?
Auf dieser Grundlage haben wir ein Plug-and-Play-Klassifikatormodul vorgeschlagen, das die Wirkung der generativen Zero-Shot-Lernmethode verbessern kann, indem nur eine Codezeile geändert wird. Für jede unsichtbare Klasse werden nur 10 Pseudo-Samples generiert, um das SOTA-Level zu erreichen. Im Vergleich zu anderen generativen Zero-Sample-Methoden weist die neue Methode einen enormen Vorteil hinsichtlich der Rechenkomplexität auf. Forschungsmitglieder kommen von der Nanjing University of Science and Technology und der Oxford University.
- Papier: https://arxiv.org/abs/2204.11822
- Code: https://github.com/cdb342/IJCAI-2022-Z LA
Dieser Artikel verwendet die konsistenten Trainings- und Testziele als Leitfaden zur Ableitung der Variationsuntergrenze des verallgemeinerten Zero-Shot-Lernbewertungsindex. Der auf diese Weise modellierte Klassifikator kann die Verwendung der Wiederannahmestrategie vermeiden und verhindern, dass der Klassifikator eine Überanpassung an die generierten Pseudoproben durchführt und die Erkennung realer Proben beeinträchtigt. Die vorgeschlagene Methode kann den einbettungsbasierten Klassifikator im Rahmen der generativen Methode wirksam machen und die Abhängigkeit des Klassifikators von der Qualität der generierten Pseudoproben verringern.
Methode
1. Einführung des parametrisierten Priors
Wir haben beschlossen, mit der Verlustfunktion des Klassifikators zu beginnen. Unter der Annahme, dass der Klassenraum durch generierte Pseudostichproben unsichtbarer Klassen vervollständigt wurde, wird der vorherige Klassifikator mit dem Ziel optimiert, die globale Genauigkeit zu maximieren:
wobei die globale Genauigkeit ist,
die Klassifikatorausgabe darstellt,
die Probenverteilung darstellt,
die entsprechende Bezeichnung von Probe X ist. Die Bewertungsindikatoren von GZSL sind:
, wobei und
die sichtbaren bzw. unsichtbaren Klassensätze darstellen. Die Inkonsistenz zwischen Trainingszielen und Testzielen bedeutet, dass frühere Klassifikator-Trainingsstrategien die Unterschiede zwischen sichtbaren und unsichtbaren Klassen nicht berücksichtigten. Selbstverständlich versuchen wir durch die Ableitung von
Ergebnisse zu erzielen, die den Trainings- und Testzielen entsprechen. Nach der Ableitung erhielten wir seine Untergrenze:
wobei die sichtbare Klasse darstellt – die unsichtbare vorherige Klasse, die unabhängig von den Daten ist und im Experiment als Hyperparameter angepasst wird,
Die sichtbare Klasse oder der interne Prior der unsichtbaren Klasse wird während des Implementierungsprozesses durch die Stichprobenhäufigkeit oder gleichmäßige Verteilung der gesehenen Klasse ersetzt. Durch Maximieren der Untergrenze von
erhalten wir das endgültige Optimierungsziel:
Daraus ergibt sich für unser Klassifizierungsmodellierungsziel die folgenden Änderungen gegenüber dem vorherigen:
Durch die Verwendung Die Kreuzentropie passt zur A-posteriori-Wahrscheinlichkeit , und wir erhalten den Klassifikatorverlust als:
Dies ähnelt der Logit-Anpassung beim Long-Tail-Lernen, daher nennen wir es Zero-Sample Logit Adjustment (ZLA). Bisher haben wir die Einführung parametrisierter Priors implementiert, um das Kategorieungleichgewicht zwischen sichtbaren und unsichtbaren Klassen als induktive Verzerrung in das Klassifikatortraining einzubetten, und müssen lediglich zusätzliche Bias-Terme zu den ursprünglichen Logits in der Code-Implementierung hinzufügen Effekte.
2. Einführung des semantischen Priors
Bisher spielt der Kern des Zero-Shot-Transfers, also der semantische Prior, nur eine Rolle beim Training des Generators und bei der Generierung von Pseudoproben hängt ausschließlich von der Qualität der generierten Pseudo-Samples unsichtbarer Klassen ab. Wenn in der Trainingsphase des Klassifikators semantische Prioritäten eingeführt werden können, hilft dies natürlich dabei, unsichtbare Klassen zu identifizieren. Im Bereich des Zero-Shot-Lernens gibt es eine Klasse einbettungsbasierter Methoden, die diese Funktion erreichen können. Diese Art von Methode ähnelt jedoch dem durch das generative Modell erlernten Wissen, also der Verbindung zwischen Semantik und Vision (semantisch-visuelle Verknüpfung), die zur direkten Einführung des vorherigen generativen Rahmens führte (siehe Artikel f -CLSWGAN) basierend auf Der eingebettete Klassifikator kann keine besseren Ergebnisse als das Original erzielen (es sei denn, der Klassifikator selbst weist eine bessere Nullschussleistung auf). Durch die in diesem Artikel vorgeschlagene ZLA-Strategie können wir die Rolle ändern, die die generierten Pseudoproben unsichtbarer Klassen beim Klassifikatortraining spielen. Von der ursprünglichen Bereitstellung unsichtbarer Klasseninformationen bis hin zur aktuellen Anpassung der Entscheidungsgrenze zwischen unsichtbaren und sichtbaren Klassen können wir in der Trainingsphase des Klassifikators semantische Prioritäten einführen. Insbesondere verwenden wir eine Prototyp-Lernmethode, um die Semantik jeder Kategorie in einen visuellen Prototyp (d. h. Klassifikatorgewicht) abzubilden und modellieren dann die angepasste A-Posteriori-Wahrscheinlichkeit als Kosinusähnlichkeit zwischen der Stichprobe und dem visuellen Prototyp (Grad der Kosinusähnlichkeit). , das heißt
wobei der Temperaturkoeffizient ist. In der Testphase wird vorhergesagt, dass die Proben der Kategorie des visuellen Prototyps mit der größten Kosinusähnlichkeit entsprechen.
Experimente
Wir haben den vorgeschlagenen Klassifikator mit dem Basis-WGAN kombiniert und bei der Generierung von 10 Proben pro unsichtbarer Klasse mit SoTAs vergleichbare Ergebnisse erzielt. Darüber hinaus haben wir es in die fortschrittlichere CE-GZSL-Methode eingefügt und so den anfänglichen Effekt verbessert, ohne andere Parameter (einschließlich der Anzahl der generierten Proben) zu ändern.
In Ablationsexperimenten haben wir einen generationsbasierten Prototyp-Lernenden mit einem reinen Prototyp-Lernenden verglichen. Wir haben herausgefunden, dass die letzte ReLU-Schicht für den Erfolg eines reinen Prototyp-Lerners von entscheidender Bedeutung ist, da das Nullen negativer Zahlen die Ähnlichkeit des Kategorieprototyps mit unsichtbaren Klassenmerkmalen erhöht (unsichtbare Klassenmerkmale werden ebenfalls durch ReLU aktiviert). Das Setzen einiger Werte auf Null schränkt jedoch auch den Ausdruck des Prototyps ein, was der weiteren Erkennungsleistung nicht förderlich ist. Durch die Verwendung pseudounsichtbarer Klassenbeispiele zum Ausgleich unsichtbarer Klasseninformationen kann bei Verwendung von RuLU nicht nur eine höhere Leistung erzielt werden, sondern auch ohne eine ReLU-Schicht eine weitere Leistungssteigerung erreicht werden.
In einer anderen Ablationsstudie haben wir einen Prototyp-Lerner mit einem anfänglichen Klassifikator verglichen. Die Ergebnisse zeigen, dass der Prototyp-Lerner beim Generieren einer großen Anzahl unsichtbarer Klassenstichproben keinen Vorteil gegenüber dem ursprünglichen Klassifikator hat. Bei Verwendung der in diesem Artikel vorgeschlagenen ZLA-Technologie zeigt der Prototyp-Lerner seine Überlegenheit. Wie bereits erwähnt, liegt dies daran, dass sowohl der prototypische Lernende als auch das generative Modell semantisch-visuelle Zusammenhänge lernen, sodass es schwierig ist, die semantischen Informationen vollständig zu nutzen. ZLA ermöglicht es den generierten unsichtbaren Klassenbeispielen, die Entscheidungsgrenze anzupassen, anstatt nur unsichtbare Klasseninformationen bereitzustellen, wodurch der prototypische Lernende aktiviert wird.
Das obige ist der detaillierte Inhalt vonMithilfe einer Codezeile, um die Wirkung von Zero-Shot-Lernmethoden erheblich zu verbessern, schlagen die Nanjing University of Technology und Oxford ein Plug-and-Play-Klassifizierungsmodul vor. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Meta hat sich mit Partnern wie Nvidia, IBM und Dell zusammengetan, um die Einsatzintegration von Lama Stack auf Unternehmensebene zu erweitern. In Bezug auf die Sicherheit hat Meta neue Tools wie Llam Guard 4, Llamafirewall und Cyberseceval 4 auf den Markt gebracht und das Lama Defenders -Programm gestartet, um die KI -Sicherheit zu verbessern. Darüber hinaus hat Meta 1,5 Millionen US -Dollar an Lama -Impact -Zuschüssen an 10 globale Institutionen verteilt, darunter Startups, die an der Verbesserung der öffentlichen Dienste, der Gesundheitsversorgung und der Bildung arbeiten. Die neue Meta -AI -Anwendung von Lama 4, die als Meta AI konzipiert wurde

Joi Ai, eine Firma Pionierin der Human-AI-Interaktion, hat den Begriff "AI-Lationships" eingeführt, um diese sich entwickelnden Beziehungen zu beschreiben. Jaime Bronstein, ein Beziehungstherapeut bei Joi AI, stellt klar, dass diese nicht dazu gedacht sind, das Menschen C zu ersetzen C.

Online -Betrug und Bot -Angriffe stellen eine bedeutende Herausforderung für Unternehmen dar. Einzelhändler bekämpfen Bots, die Produkte horten, Banken Battle Account Takeovers und Social -Media -Plattformen kämpfen mit Imitatoren. Der Aufstieg von AI verschärft dieses Problem, das Rende

AI -Agenten sind bereit, das Marketing zu revolutionieren und möglicherweise die Auswirkungen früherer technologischer Verschiebungen zu übertreffen. Diese Agenten, die einen signifikanten Fortschritt in der generativen KI darstellen, verarbeiten nicht nur Informationen wie Chatgpt, sondern auch Actio

Die Auswirkungen der KI auf wichtige Entscheidungen von NBA Game 4 Zwei entscheidende NBA-Matchups in Game 4 zeigten die bahnbrechende Rolle der KI beim Amtieren. Im ersten Fall führte Denvers verpasste Drei-Zeiger von Nikola Jokic zu einer Gasse in der letzten Sekunden von Aaron Gordon. Sony's Haw

Traditionell forderte die weltweit expandierende Expertin der regenerativen Medizin umfangreiche Reisen, praktische Ausbildung und jahrelange Mentoring. Jetzt verändert AI diese Landschaft, überwindet geografische Einschränkungen und beschleunigte Fortschritte durch EN

Intel arbeitet daran, seinen Herstellungsprozess in die führende Position zurückzugeben, während er versucht, Fab -Semiconductor -Kunden anzuziehen, um Chips an seinen Fabriken herzustellen. Zu diesem Zweck muss Intel mehr Vertrauen in die Branche aufbauen, um nicht nur die Wettbewerbsfähigkeit seiner Prozesse zu beweisen, sondern auch zu demonstrieren, dass Partner Chips in einer vertrauten und ausgereiften Workflow, konsistente und sehr zuverlässige Weise herstellen können. Alles, was ich heute höre, lässt mich glauben, dass Intel dieses Ziel zu diesem Ziel bewegt. Die Keynote -Rede des neuen CEO Tan Libai begann den Tag. Tan Libai ist unkompliziert und prägnant. Er skizziert mehrere Herausforderungen in den Foundry -Diensten von Intel und die Maßnahmen, die Unternehmen ergriffen haben, um diese Herausforderungen zu bewältigen und einen erfolgreichen Weg für Intel Foundry Services in Zukunft zu planen. Tan Libai sprach über den Prozess des OEM -Dienstes von Intel, um Kunden mehr zu machen

Die Chaucer Group, ein globales Spezialversicherungsunternehmen, und Armilla AI haben sich mit den wachsenden Bedenken hinsichtlich der KI-Risiken befassen, und Armilla AI haben sich zusammengeschlossen, um ein neuartiges Versicherungsprodukt von Drittanbietern (TPL) einzubringen. Diese Richtlinie schützt Unternehmen vor


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Dreamweaver CS6
Visuelle Webentwicklungstools

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.
