Heim >Datenbank >MySQL-Tutorial >Grundlegendes zum MySQL-Index-Pushdown in einem Artikel
Dieser Artikel bringt Ihnen relevantes Wissen über MySQL, das hauptsächlich den relevanten Inhalt zum Index-Pushdown vorstellt, der auch Index-Pushdown genannt wird, oder kurz ICP Optimierung der Datenabfrage. Ich hoffe, dass es für alle hilfreich sein wird.
Empfohlenes Lernen: MySQL-Video-Tutorial
MySQL
-Datenbank besteht aus Server
-Ebene und Engine
Schichtzusammensetzung: MySQL
数据库由 Server
层和 Engine
层组成:
Server
层: 有 SQL
分析器、SQL
优化器、SQL
执行器,用于负责 SQL
语句的具体执行过程。Engine
层: 负责存储具体的数据,如最常使用的 InnoDB
存储引擎,还有用于在内存中存储临时结果集的 TempTable
引擎。通过客户端/服务器通信协议与 MySQL
建立连接。
查询缓存:
Query Cache
且在查询缓存过程中查询到完全相同的 SQL
语句,则将查询结果直接返回给客户端;Query Cache
或者没有查询到完全相同的 SQL
语句则会由解析器进行语法语义解析,并生成解析树。分析器生成新的解析树。
查询优化器生成执行计划。
查询执行引擎执行 SQL
语句,此时查询执行引擎会根据 SQL
语句中表的存储引擎类型,以及对应的 API
接口与底层存储引擎缓存或者物理文件的交互情况,得到查询结果,由 MySQL Server
过滤后将查询结果缓存并返回给客户端。
若开启了
Query Cache
,这时也会将SQL
语句和结果完整地保存到Query Cache
中,以后若有相同的SQL
语句执行则直接返回结果。
Tips
:MySQL 8.0
已去掉 query cache
(查询缓存模块)。
因为查询缓存的命中率会非常低。 查询缓存的失效非常频繁:只要有对一个表的更新,这个表上所有的查询缓存都会被清空。
索引下推(Index Condition Pushdown
): 简称 ICP
,通过把索引过滤条件下推到存储引擎,来减少 MySQL
存储引擎访问基表的次数 和 MySQL
服务层访问存储引擎的次数。
索引下推 VS 覆盖索引: 其实都是 减少回表的次数,只不过方式不同
覆盖索引: 当索引中包含所需要的字段(SELECT XXX
),则不再回表去查询字段。
索引下推: 对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表的行数。
要了解 ICP
是如何工作的,先从一个查询 SQL
开始:
举个栗子:查询名字 la
开头、年龄为 18
的记录
SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
有这些记录:
不开启 ICP
时索引扫描是如何进行的:
WHERE
中字段做判断,过滤掉不满足条件的行。使用 ICP
,索引扫描如下进行:
WHERE
中字段做判断,在索引列中进行过滤。WHERE
Server
Schicht: Hat SQL
-Analysator, SQL
-Optimierung Executor, SQL
Executor, ist für den spezifischen Ausführungsprozess von SQL
-Anweisungen verantwortlich. Engine
-Schicht: Verantwortlich für die Speicherung spezifischer Daten, wie z. B. der am häufigsten verwendeten InnoDB
-Speicher-Engine, und für die Speicherung temporärer Ergebnisse in Speichersets TempTable
-Engine.
MySQL
her. 🎜🎜Abfrage-Cache
aktiviert ist und genau das gleiche SQL
während der Abfrage abgefragt wird Cache-Prozesscode>-Anweisung werden die Abfrageergebnisse direkt an den Client zurückgegeben. 🎜Query Cache
nicht aktiviert ist oder genau dieselbe SQL
-Anweisung nicht aktiviert ist Wenn es abgefragt wird, wird es analysiert. Der Prozessor führt eine syntaktische und semantische Analyse durch und generiert einen Analysebaum. 🎜🎜🎜SQL
-Anweisung aus. Zu diesem Zeitpunkt basiert die Abfrageausführungs-Engine auf dem Speicher-Engine-Typ der Tabelle im SQL
Anweisung und die entsprechende API
Die Schnittstelle interagiert mit dem zugrunde liegenden Speicher-Engine-Cache oder physischen Dateien, um Abfrageergebnisse zu erhalten. Nach der Filterung durch MySQL Server
werden die Abfrageergebnisse zwischengespeichert und zurückgegeben der Kunde. 🎜🎜Wenn🎜🎜🎜🎜Query Cache
aktiviert ist, werden dieSQL
-Anweisung und die Ergebnisse zu diesem Zeitpunkt vollständig imQuery Cache
gespeichert Wird dieselbeSQL
-Anweisung ausgeführt, wird das Ergebnis direkt zurückgegeben. 🎜
Tipps
: MySQL 8.0
hat den Abfrage-Cache
(Abfrage-Cache-Modul) entfernt. 🎜🎜Weil die Trefferquote des Abfragecaches sehr niedrig sein wird. Ungültigmachungen des Abfragecaches kommen sehr häufig vor: Bei jeder Aktualisierung einer Tabelle werden alle Abfragecaches für diese Tabelle geleert. 🎜🎜Was ist Index-Pushdown? 🎜🎜🎜Index Condition Pushdown (
Index Condition Pushdown
): wird als ICP
bezeichnet und reduziert MySQL, indem die Indexfilterbedingungen nach unten verschoben werden Speicher-Engine.
Die Häufigkeit, mit der die Speicher-Engine auf die Basistabelle zugreift, und die Häufigkeit, mit der die MySQL
-Dienstschicht auf die Speicher-Engine zugreift. 🎜🎜🎜Index-Pushdown vs. Covering-Index: Tatsächlich 🎜reduzieren beide die Anzahl der Tabellenrückgaben, aber auf unterschiedliche Weise 🎜SELECT XXX
), ist es nicht erforderlich, zur Tabelle zurückzukehren, um die Felder abzufragen. 🎜🎜ICP
funktioniert, beginnen Sie mit einer Abfrage SQL
:🎜🎜Zum Beispiel: Fragen Sie den Namen la Records ab, der mit beginnt
und Alter 18
🎜-- 表创建 CREATE TABLE IF NOT EXISTS `user` ( `id` VARCHAR(64) NOT NULL COMMENT '主键 id', `name` VARCHAR(50) NOT NULL COMMENT '名字', `age` TINYINT NOT NULL COMMENT '年龄', `address` VARCHAR(100) NOT NULL COMMENT '地址', PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT '用户表'; -- 创建索引 CREATE INDEX idx_name_age ON user (name, age); -- 新增数据 INSERT INTO user (id, name, age, address) VALUES (1, 'tt', 14, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (2, 'lala', 18, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (3, 'laxi', 30, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (4, 'lawa', 40, 'linhai'); -- 查询语句 SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;🎜🎜 haben diese Datensätze: 🎜🎜🎜🎜🎜So funktioniert das Indexscannen, wenn
ICP
nicht aktiviert ist:🎜WHERE
und filtern Sie Zeilen heraus, die die Bedingungen nicht erfüllen. 🎜🎜🎜🎜🎜🎜Verwenden Sie ICP code>, der Indexscan läuft wie folgt ab:🎜<ul>
<li>Holen Sie sich das Indextupel. 🎜</li>
<li>Beurteilen Sie die Felder in <code>WHERE
und filtern Sie in der Indexspalte. 🎜WHERE
und filtern Sie Zeilen heraus, die die Bedingungen nicht erfüllen. 🎜🎜🎜🎜🎜实验:使用 MySQL
版本 8.0.16
-- 表创建 CREATE TABLE IF NOT EXISTS `user` ( `id` VARCHAR(64) NOT NULL COMMENT '主键 id', `name` VARCHAR(50) NOT NULL COMMENT '名字', `age` TINYINT NOT NULL COMMENT '年龄', `address` VARCHAR(100) NOT NULL COMMENT '地址', PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT '用户表'; -- 创建索引 CREATE INDEX idx_name_age ON user (name, age); -- 新增数据 INSERT INTO user (id, name, age, address) VALUES (1, 'tt', 14, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (2, 'lala', 18, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (3, 'laxi', 30, 'linhai'); INSERT INTO user (id, name, age, address) VALUES (4, 'lawa', 40, 'linhai'); -- 查询语句 SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
新增数据如下:
ICP
,再调用 EXPLAIN
查看语句:-- 将 ICP 关闭 SET optimizer_switch = 'index_condition_pushdown=off'; -- 查看确认 show variables like 'optimizer_switch'; -- 用 EXPLAIN 查看 EXPLAIN SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
ICP
,再调用 EXPLAIN
查看语句:-- 将 ICP 打开 SET optimizer_switch = 'index_condition_pushdown=on'; -- 查看确认 show variables like 'optimizer_switch'; -- 用 EXPLAIN 查看 EXPLAIN SELECT * FROM user WHERE name LIKE 'la%' AND age = 18;
由上实验可知,区别是否开启 ICP
: Exira
字段中的 Using index condition
更进一步,来看下 ICP
带来的性能提升:
通过访问数据文件的次数
-- 1. 清空 status 状态 flush status; -- 2. 查询 SELECT * FROM user WHERE name LIKE 'la%' AND age = 18; -- 3. 查看 handler 状态 show status like '%handler%';
对比开启 ICP
和 关闭 ICP
: 关注 Handler_read_next
的值
-- 开启 ICP flush status; SELECT * FROM user WHERE name LIKE 'la%' AND age = 18; show status like '%handler%'; +----------------------------|-------+ | Variable_name | Value | +----------------------------|-------+ | Handler_commit | 1 | | Handler_delete | 0 | | Handler_discover | 0 | | Handler_external_lock | 2 | | Handler_mrr_init | 0 | | Handler_prepare | 0 | | Handler_read_first | 0 | | Handler_read_key | 1 | | Handler_read_last | 0 | | Handler_read_next | 1 | <---重点 | Handler_read_prev | 0 | | Handler_read_rnd | 0 | | Handler_read_rnd_next | 0 | | Handler_rollback | 0 | | Handler_savepoint | 0 | | Handler_savepoint_rollback | 0 | | Handler_update | 0 | | Handler_write | 0 | +----------------------------|-------+ 18 rows in set (0.00 sec) -- 关闭 ICP flush status; SELECT * FROM user WHERE name LIKE 'la%' AND age = 18; show status like '%handler%'; +----------------------------|-------+ | Variable_name | Value | +----------------------------|-------+ | Handler_commit | 1 | | Handler_delete | 0 | | Handler_discover | 0 | | Handler_external_lock | 2 | | Handler_mrr_init | 0 | | Handler_prepare | 0 | | Handler_read_first | 0 | | Handler_read_key | 1 | | Handler_read_last | 0 | | Handler_read_next | 3 | <---重点 | Handler_read_prev | 0 | | Handler_read_rnd | 0 | | Handler_read_rnd_next | 0 | | Handler_rollback | 0 | | Handler_savepoint | 0 | | Handler_savepoint_rollback | 0 | | Handler_update | 0 | | Handler_write | 0 | +----------------------------|-------+ 18 rows in set (0.00 sec)
由上实验可知:
ICP
:Handler_read_next
等于 1,回表查 1 次。ICP
:Handler_read_next
等于 3,回表查 3 次。这实验跟上面的栗子就对应上了。
根据官网可知,索引下推 受以下条件限制:
当需要访问整个表行时,ICP
用于 range
、 ref
、 eq_ref
和 ref_or_null
ICP
可以用于 InnoDB
和 MyISAM
表,包括分区表 InnoDB
和 MyISAM
表。
对于 InnoDB
表,ICP
仅用于二级索引。ICP
的目标是减少全行读取次数,从而减少 I/O
操作。对于 InnoDB
聚集索引,完整的记录已经读入 InnoDB
缓冲区。在这种情况下使用 ICP
不会减少 I/O
。
在虚拟生成列上创建的二级索引不支持 ICP
。InnoDB
支持虚拟生成列的二级索引。
引用子查询的条件不能下推。
引用存储功能的条件不能被按下。存储引擎不能调用存储的函数。
触发条件不能下推。
不能将条件下推到包含对系统变量的引用的派生表。(MySQL 8.0.30
及更高版本)。
小结下:
ICP
仅适用于 二级索引。ICP
目标是 减少回表查询。ICP
对联合索引的部分列模糊查询非常有效。CREATE TABLE UserLogin ( userId BIGINT, loginInfo JSON, cellphone VARCHAR(255) AS (loginInfo->>"$.cellphone"), PRIMARY KEY(userId), UNIQUE KEY idx_cellphone(cellphone) );
列 cellphone
:就是一个虚拟列,它是由后面的函数表达式计算而成,本身这个列不占用任何的存储空间,而索引 idx_cellphone
实质是一个函数索引。
好处: 在写 SQL
时可以直接使用这个虚拟列,而不用写冗长的函数。
举个栗子: 查询手机号
-- 不用虚拟列 SELECT * FROM UserLogin WHERE loginInfo->>"$.cellphone" = '13988888888' -- 使用虚拟列 SELECT * FROM UserLogin WHERE cellphone = '13988888888'
推荐学习:mysql视频教程
Das obige ist der detaillierte Inhalt vonGrundlegendes zum MySQL-Index-Pushdown in einem Artikel. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!