suchen
HeimBackend-EntwicklungPython-TutorialEinführung in Python-Datentypen – Numpy

Dieser Artikel vermittelt Ihnen relevantes Wissen über Python, in dem hauptsächlich Probleme im Zusammenhang mit Numpy-Datentypen organisiert werden, einschließlich der grundlegenden Datentypen von Numpy, der benutzerdefinierten zusammengesetzten Datentypen von Numpy, der Verwendung von ndarray zum Speichern von Datumsdatentypen usw. Schauen wir uns das an Ich hoffe, dass der Inhalt unten für alle hilfreich sein wird.

Einführung in Python-Datentypen – Numpy

【Verwandte Empfehlung: Python3-Video-Tutorial


1. Grundlegende Datentypen von Numpy

Typname Typindikator
Boolean bool
Integer-Typ mit Vorzeichen int8/int16/int32/int64
Integer-Typ ohne Vorzeichen uint8/uint16/uint32/uint64
Gleitkomma-Typ float 16/float32/ float64
Plural Typ complex64 / complex128
Zeichentyp str, jedes Zeichen wird durch 32-Bit-Unicode-Codierung dargestellt
import numpy as np

arr = np.array([1, 2, 3])
print(arr, arr.dtype)

arr = arr.astype('int64')
print(arr, arr.dtype)

arr = arr.astype('float32')
print(arr, arr.dtype)

arr = arr.astype('bool')
print(arr, arr.dtype)

arr = arr.astype('str')
print(arr, arr.dtype)

Einführung in Python-Datentypen – Numpy

2. Numpy benutzerdefinierter zusammengesetzter Datentyp

Wenn Sie möchten Um Objekttypen in ndarray zu speichern, empfiehlt Numpy die Verwendung von Tupeln zum Speichern von Attributfeldwerten von Objekten. Das anschließende Hinzufügen von Tupeln zu ndarray bietet eine Syntax, um die Verarbeitung dieser Daten zu erleichtern.

import numpy as np

data = [
    ('zs', [99, 98, 90], 17),
    ('ls', [95, 95, 92], 16),
    ('ww', [97, 92, 91], 18)
]
# 姓名 2 个字符
# 3 个 int32 类型的成绩
# 1 个 int32 类型的年龄
arr = np.array(data, dtype='2str, 3int32, int32')
print(arr)
print(arr.dtype)
# 可以通过索引访问
print(arr[0], arr[0][2])

Einführung in Python-Datentypen – Numpy

Wenn die Datenmenge groß ist, ist die obige Methode für den Datenzugriff nicht geeignet.

ndarray stellt Datentypen und Spaltenaliase bereit, die in Form von
Wörterbüchern oder Listen

definiert werden können. Beim Zugriff auf Daten können Sie über tiefgestellte Indizes oder Spaltennamen darauf zugreifen.

import numpy as np

data = [
    ('zs', [99, 98, 90], 17),
    ('ls', [95, 95, 92], 16),
    ('ww', [97, 92, 91], 18)]# 采用字典定义列名和元素的数据类型arr = np.array(data, dtype={
    # 设置每列的别名
    'names': ['name', 'scores', 'age'],
    # 设置每列数据元素的数据类型
    'formats': ['2str', '3int32', 'int32']})print(arr, arr[0]['age'])# 采用列表定义列名和元素的数据类型arr = np.array(data, dtype=[
    # 第一列
    ('name', 'str', 2),
    # 第二列
    ('scores', 'int32', 3),
    # 第三列
    ('age', 'int32', 1)])print(arr, arr[1]['scores'])# 直接访问数组的一列print(arr['scores'])

Einführung in Python-Datentypen – Numpy

3. Verwenden Sie ndarray, um den Datumsdatentyp
import numpy as np

dates = [
    '2011',
    '2011-02',
    '2011-02-03',
    '2011-04-01 10:10:10'
]

ndates = np.array(dates)
print(ndates, ndates.dtype)

# 数据类型为日期类型,采用 64 位二进制进行存储,D 表示日期精确到天
ndates = ndates.astype('datetime64[D]')
print(ndates, ndates.dtype)

# 日期运算
print(ndates[-1] - ndates[0])

1 zu speichern. Die Unterstützung für Datumszeichenfolgen unterstützt 2011/11/11 nicht, verwenden Sie Leerzeichen getrennt Das Datum unterstützt 2011 11 11 nicht, unterstützt jedoch 2011-11-11Einführung in Python-Datentypen – Numpy 2. Zwischen Datum und Uhrzeit muss ein Leerzeichen stehen, um zu trennen 2011-04-01 10 :10:10

3. Zeitschreibformat 10:10:10

4. Geben Sie den Zeichencode ein (Datentypabkürzung)2011/11/11,使用空格进行分隔日期也不支持 2011 11 11,支持 2011-11-11
2.日期与时间之间需要有空格进行分隔 2011-04-01 10:10:10
3.时间的书写格式 10:10:10

numpy stellt den Typ bereit Zeichencode, der eine bequemere Handhabung von Datentypen ermöglichen kann. ?? 1 6/int32/int64

i1/ i2/ I4/I8 f4 / f8

complex64 / complex128c8 / c16Zeichentypstr, jedes Zeichen wird durch 32-Bit-Unicode-Codierung dargestelltUDatumdatatime64 M8[ Y] / M8[M ] / M8[D] / M8[h] / M8[m] / M8[s]
import numpy as np

data = [
    ('zs', [99, 98, 90], 17),
    ('ls', [95, 95, 92], 16),
    ('ww', [97, 92, 91], 18)
]
# 采用字典定义列名和元素的数据类型
arr = np.array(data, dtype={
    # 设置每列的别名
    'names': ['name', 'scores', 'age'],
    # 设置每列数据元素的数据类型
    'formats': ['2U', '3i4', 'i4']
})

print(arr)
print(arr[1]['scores'])
print(arr['scores'])
print(arr.dtype)
5. Fall Felder auswählen, ndarray Store-Daten verwenden. Python3-Video-Tutorial
import numpy as np

datas = [
    (0, '4室1厅', 298.79, 2598, 86951),
    (1, '3室2厅', 154.62, 1000, 64675),
    (2, '3室2厅', 177.36, 1200, 67659),]arr = np.array(datas, dtype={
    'names': ['index', 'housetype', 'square', 'totalPrice', 'unitPrice'],
    'formats': ['u1', '4U', 'f4', 'i4', 'i4']})print(arr)print(arr.dtype)# 计算 totalPrice 的均值sum_totalPrice = sum(arr['totalPrice'])print(sum_totalPrice/3)
[Verwandte Empfehlungen: ]

Das obige ist der detaillierte Inhalt vonEinführung in Python-Datentypen – Numpy. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Dieser Artikel ist reproduziert unter:CSDN. Bei Verstößen wenden Sie sich bitte an admin@php.cn löschen
Wie schneiden Sie eine Python -Liste?Wie schneiden Sie eine Python -Liste?May 02, 2025 am 12:14 AM

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Was sind einige gängige Operationen, die an Numpy -Arrays ausgeführt werden können?Was sind einige gängige Operationen, die an Numpy -Arrays ausgeführt werden können?May 02, 2025 am 12:09 AM

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Wie werden Arrays in der Datenanalyse mit Python verwendet?Wie werden Arrays in der Datenanalyse mit Python verwendet?May 02, 2025 am 12:09 AM

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc

Wie vergleicht sich der Speicherpflichtiger einer Liste mit dem Speicher Fußabdruck eines Arrays in Python?Wie vergleicht sich der Speicherpflichtiger einer Liste mit dem Speicher Fußabdruck eines Arrays in Python?May 02, 2025 am 12:08 AM

ListsandNumPyarraysinPythonhavedifferentmemoryfootprints:listsaremoreflexiblebutlessmemory-efficient,whileNumPyarraysareoptimizedfornumericaldata.1)Listsstorereferencestoobjects,withoverheadaround64byteson64-bitsystems.2)NumPyarraysstoredatacontiguou

Wie behandeln Sie umgebungsspezifische Konfigurationen, wenn Sie ausführbare Python-Skripte bereitstellen?Wie behandeln Sie umgebungsspezifische Konfigurationen, wenn Sie ausführbare Python-Skripte bereitstellen?May 02, 2025 am 12:07 AM

TensurepythonscriptsBehavectelyAcrossdevelopment, Staging und Produktion, UsethesStrategien: 1) Umweltvariablenforsimplesettings, 2) configurationFilesForComplexSetups und 3) dynamikloadingForAdaptability.eachMethodofferiqueNefits und Requiresca

Wie schneiden Sie ein Python -Array?Wie schneiden Sie ein Python -Array?May 01, 2025 am 12:18 AM

Die grundlegende Syntax für die Python -Liste ist die Liste [START: STOP: STEP]. 1.Start ist der erste Elementindex, 2.Stop ist der erste Elementindex, und 3.Step bestimmt die Schrittgröße zwischen den Elementen. Scheiben werden nicht nur zum Extrahieren von Daten verwendet, sondern auch zum Ändern und Umkehrlisten.

Unter welchen Umständen könnte Listen besser abschneiden als Arrays?Unter welchen Umständen könnte Listen besser abschneiden als Arrays?May 01, 2025 am 12:06 AM

ListSoutPer -CharakterArraysin: 1) Dynamics und Dynamics und 3), 2) StoringHeterogenData und 3) MemoryefficiencyForSparsedata, ButmayHavesLightPerformanceCostIncustonTectorationOperationen.

Wie können Sie ein Python -Array in eine Python -Liste konvertieren?Wie können Sie ein Python -Array in eine Python -Liste konvertieren?May 01, 2025 am 12:05 AM

Toconvertapythonarraytoalist, Usethelist () constructororageneratorexpression.1) ImportThearrayModuleandCreateanarray.2) Uselist (arr) oder [xForxinarr] Toconvertittoalist in Betracht, überlegt Performance undMoryefficiencyForlargedatasets.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.