Heim >Datenbank >MySQL-Tutorial >Lassen Sie uns über Aggregatfunktionen in MySQL sprechen und Paging-Abfragen üben!
Dieser Artikel führt Sie durch die Aggregationsfunktionen in den integrierten Funktionen von MySQL und zeigt Ihnen, wie Sie Paging-Abfragen durchführen.
Referenzlink: #MySQL-Datenbank (MySQL-Installation/Basis/Erweitert/Optimierung)
https://www.bilibili.com/video/BV1iq4y1u7vj
Wir haben bereits etwas über einzeilige SQL-Funktionen gelernt. Tatsächlich gibt es eine andere Art von SQL-Funktion namens Aggregation (oder Aggregation, Gruppierung), bei der es sich um eine Funktion handelt, die einen Datensatz zusammenfasst. Die Eingabe ist ein Datensatz und die Ausgabe ist ein einzelner Wert. [Verwandte Empfehlungen: MySQL-Video-Tutorial]
1. Einführung in Aggregatfunktionen
Was sind Aggregatfunktionen? Aggregatfunktionen wirken auf einen Datensatz und geben einen Wert an einen Datensatz zurück.Aggregationsfunktionstyp
AVG()
Aggregationsfunktionen können nicht als verschachtelte Aufrufe bezeichnet werdenAufrufe in der Form „AVG(SUM(field name))“ können beispielsweise nicht auftreten.
1.1 AVG- und SUM-Funktionen
Sie können die AVG- und SUM-Funktionen fürnumerische Daten
verwenden.SELECT AVG(salary), MAX(salary),MIN(salary), SUM(salary) FROM employees WHERE job_id LIKE '%REP%';
Sie können die MIN- und MAX-Funktionen für Daten jedes Datentyps
verwenden.SELECT MIN(hire_date), MAX(hire_date) FROM employees;
COUNT(*)
gibt die Gesamtzahl der Datensätze in der Tabelle zurück, geeignet für
SELECT COUNT(*) FROM employees WHERE department_id = 50;
COUNT(*)
返回表中记录总数,适用于任意数据类型。SELECT COUNT(commission_pct) FROM employees WHERE department_id = 50; //忽略了Null值
COUNT(expr)
返回expr不为空的记录总数。SELECT column, group_function(column) FROM table [WHERE condition] [GROUP BY group_by_expression] [ORDER BY column];
计算表中有多少条记录
count(*)
count(1)
count(某具体字段)
,但是因为忽略了null值,所以不一定对问题:用count(*),count(1),count(列名)谁好呢?
其实,对于MyISAM引擎的表是没有区别的。这种引擎内部有一计数器在维护着行数,但是COUNT(*)
的效率略高
Innodb引擎的表用count(*)
,count(1)直接读行数,复杂度是O(n),因为innodb真的要去数一遍。但好于具体的count(列名)。
问题:能不能使用count(列名)替换count(*)?
不要使用 count(列名)来替代 count(*)
,count(*)
是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL 和非 NULL 无关。
说明:count(*)
会统计值为 NULL 的行,而 count(列名)
COUNT(expr)
Gibt die Gesamtzahl der Datensätze zurück, bei denen
.Berechnen Sie, wie viele Datensätze es in der Tabelle gibt
SELECT department_id, AVG(salary) FROM employees GROUP BY department_id ;
Methode 1: count(*)
Methode 2: count(1)
count (ein bestimmtes Feld)
, aber da der Nullwert ignoriert wird, ist er nicht unbedingt korrektMyISAM-Engine
. Es gibt einen Zähler in dieser Engine, um die Anzahl der Zeilen beizubehalten, aberCOUNT(*)
ist etwas effizienter. Innodb-Engine-Tabellen verwenden count(*)
, count (1) Beim direkten Lesen der Anzahl der Zeilen beträgt die Komplexität O (n), da Innodb sie wirklich einmal zählen muss. Aber besser als eine bestimmte Anzahl (Spaltenname).
Verwenden Sie count (Spaltenname) nicht, um count(*)
, zu ersetzen count( *)
ist die von SQL92 definierte Standardsyntax zum Zählen von Zeilen, die nichts mit der Datenbank oder NULL oder Nicht-NULL zu tun hat.
count(*)
zählt Zeilen mit NULL-Werten, count(column name)
zählt jedoch keine Zeilen mit NULL-Werten in dieser Spalte.
Hinweis:
Die oben genannten Gruppierungsfunktionen Nullwerte ignorieren
können mit „distinct“ verwendet werden, um Deduplizierungsvorgänge zu implementieren.
Die Zählfunktion wird separat eingeführt. Im Allgemeinen wird count(*) verwendet. Das zum Zählen der Zeilenanzahl verwendete Feld und die Gruppierungsfunktion müssen das Feld nach der Gruppierung nach sein. 2. GRUPPE NACH. 2.1 Grundlegende Verwendung Mit der GROUP BY-Klausel können Sie die Daten in der Tabelle in mehrere Gruppen unterteilen. Die Syntax lautet wie folgt: SELECT AVG(salary)
FROM employees
GROUP BY department_id ;
1 stehen die SELECT-Liste, die nicht in der Gruppenfunktion enthalten ist. Die Spalten sollten in der GROUP BY-Klausel enthalten sein.
2 Die in der GROUP BY-Klausel enthaltenen Spalten müssen nicht in der SELECT-Liste enthalten sein 2.2 Verwenden Sie die Gruppierung mehrerer Spalten 使用 注意: 当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的,当然这是只在5.7才存在的 3. HAVING(过滤数据) 3.1 基本使用 过滤分组:HAVING子句 行已经被分组。 使用了聚合函数。 满足HAVING 子句中条件的分组将被显示。 HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。 非法使用聚合函数 : 不能在 WHERE 子句中使用聚合函数来代替过滤条件。如下: 练习:查询部门id为10,20,30,40这4个部门中最高工资比10000高的部门信息 结论: 当过滤条件中有聚合函数时,则此过滤条件必须声明在HAVING中。 当过滤条件中没有聚合函数时,则此过滤条件声明在WHERE中或HAVING中都可以。但是,建议大家声明在WHERE中 3.2 WHERE和HAVING的对比 区别1:WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。 这决定了,在需要对数据进行分组统计的时候,HAVING 可以完成 WHERE 不能完成的任务。这是因为,在查询语法结构中,WHERE 在 GROUP BY 之前,所以无法对分组结果进行筛选。HAVING 在 GROUP BY 之后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成的。另外,WHERE排除的记录不再包括在分组中。 区别2:如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接后筛选。 这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。HAVING 则需要先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用的资源就比较多,执行效率也较低。 小结如下: 开发中的选择: WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。包含分组统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。一般来讲,能用分组前筛选的,尽量使用分组前筛选,提高效率 4. 回顾:分页查询 ★ 应用场景:当要显示的数据,一页显示不全,需要分页提交sql请求 语法: 特点: limit语句放在查询语句的最后 公式 假设size=10,即每页显示10条记录,page从1开始,即第一页 案例1:查询前五条员工信息 案例2:查询第11条——第25条 案例3: 有奖金的员工信息,并且工资较高的前10名显示出来 5. SELECT的执行过程 5.1 SELECT语句的完整结构 5.2 SELECT执行顺序 你需要记住 SELECT 查询时的两个顺序: 1. 关键字的顺序是不能颠倒的: 2.SELECT 语句的执行顺序(在 MySQL 和 Oracle 中,SELECT 执行顺序基本相同): 比如你写了一个 SQL 语句,那么它的关键字顺序和执行顺序是下面这样的: 在 SELECT 语句执行这些步骤的时候,每个步骤都会产生一个 从这里的执行顺序我们也看出来了,因为where是先筛选的,因此group by语句事先分组,参与分组的数据要少,因此执行效率要高 5.3 SQL 的执行原理 SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤: 首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1; 通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2; 添加外部行。如果我们使用的是左连接、右链接或者全连接,就会涉及到外部行,也就是在虚拟表 vt1-2 的基础上增加外部行,得到虚拟表 vt1-3。 当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。这个过程得到是我们的原始数据。 当我们拿到了查询数据表的原始数据,也就是最终的虚拟表 然后进入第三步和第四步,也就是 当我们完成了条件筛选部分之后,就可以筛选表中提取的字段,也就是进入到 首先在 SELECT 阶段会提取想要的字段,然后在 DISTINCT 阶段过滤掉重复的行,分别得到中间的虚拟表 当我们提取了想要的字段数据之后,就可以按照指定的字段进行排序,也就是 最后在 vt6 的基础上,取出指定行的记录,也就是 当然我们在写 SELECT 语句的时候,不一定存在所有的关键字,相应的阶段就会省略。 同时因为 SQL 是一门类似英语的结构化查询语言,所以我们在写 SELECT 语句的时候,还要注意相应的关键字顺序,**所谓底层运行的原理,就是我们刚才讲到的执行顺序。**更细致的内容参考后续的高级篇架构 6. 课后练习 综合练习1 1.where子句可否使用组函数进行过滤? No 2.查询公司员工工资的最大值,最小值,平均值,总和 3.查询各job_id的员工工资的最大值,最小值,平均值,总和 4.选择具有各个job_id的员工人数 5.查询员工最高工资和最低工资的差距(DIFFERENCE) 6.查询各个管理者手下员工的最低工资,其中最低工资不能低于6000,没有管理者的员工不计算在内 7.查询所有部门的名字,location_id,员工数量和平均工资,并按平均工资降序 8.查询每个工种、每个部门的部门名、工种名和最低工资 综合练习2 1.简单的分组 案例1:查询每个工种的员工平均工资 案例2:查询每个位置的部门个数 2.可以实现分组前的筛选 案例1:查询邮箱中包含a字符的 每个部门的最高工资 案例2:查询有奖金的每个领导手下员工的平均工资 3.分组后筛选 案例1:查询哪个部门的员工个数>5 案例2:每个工种有奖金的员工的最高工资>12000的工种编号和最高工资 案例3:领导编号>102的每个领导手下的最低工资大于5000的领导编号和最低工资 4.添加排序 案例:每个工种有奖金的员工的最高工资>6000的工种编号和最高工资,按最高工资升序 5.按多个字段分组 案例:查询每个工种每个部门的最低工资,并按最低工资降序 更多编程相关知识,请访问:编程入门!!WITH ROLLUP
关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所有记录的总和,即统计记录数量。SELECT department_id,AVG(salary)
FROM employees
WHERE department_id > 80
GROUP BY department_id WITH ROLLUP;
SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000 ;
SELECT department_id, AVG(salary)
FROM employees
WHERE AVG(salary) > 8000
GROUP BY department_id;
#方式1:推荐,执行效率高于方式2.
SELECT department_id,MAX(salary)
FROM employees
WHERE department_id IN (10,20,30,40)
GROUP BY department_id
HAVING MAX(salary) > 10000;
#方式2:
SELECT department_id,MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary) > 10000 AND department_id IN (10,20,30,40);
1. 从适用范围上来讲,HAVING的适用范围更广。
2. 如果过滤条件中没有聚合函数:这种情况下,WHERE的执行效率要高于HAVING
优点
缺点
WHERE(分组前筛选)
先筛选数据再关联,执行效率高
不能使用分组中的计算函数进行筛选
HAVING(分组后筛选)
可以使用分组中的计算函数
在最后的结果集中进行筛选,执行效率较低
select 查询列表
from 表
【join type join 表2
on 连接条件
where 筛选条件
group by 分组字段
having 分组后的筛选
order by 排序的字段】
limit 【offset,】size;
offset 要显示条目的起始索引(起始索引从0开始)
size 要显示的条目个数
select 查询列表
from 表
limit (page-1)*size,size;
SELECT * FROM employees LIMIT 0,5;
SELECT * FROM employees LIMIT 5;
SELECT * FROM employees LIMIT 10,15;
SELECT *
FROM employees
WHERE commission_pct IS NOT NULL
ORDER BY salary DESC
LIMIT 10 ;
#方式1:sql92语法:
SELECT ...,....,...
FROM ...,...,....
WHERE 多表的连接条件
AND 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#方式2:sql99语法
SELECT ...,....,...
FROM ... JOIN ...
ON 多表的连接条件
JOIN ...
ON ...
WHERE 不包含组函数的过滤条件
AND/OR 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#其中:
#(1)from:从哪些表中筛选
#(2)on:关联多表查询时,去除笛卡尔积
#(3)where:从表中筛选的条件
#(4)group by:分组依据
#(5)having:在统计结果中再次筛选
#(6)order by:排序
#(7)limit:分页
SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY ... LIMIT...
FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT
SELECT DISTINCT player_id, player_name, count(*) as num # 顺序 5
FROM player JOIN team ON player.team_id = team.team_id # 顺序 1
WHERE height > 1.80 # 顺序 2
GROUP BY player.team_id # 顺序 3
HAVING num > 2 # 顺序 4
ORDER BY num DESC # 顺序 6
LIMIT 2 # 顺序 7
虚拟表
,然后将这个虚拟表传入下一个步骤中作为输入。需要注意的是,这些步骤隐含在 SQL 的执行过程中,对于我们来说是不可见的。
vt1
,就可以在此基础上再进行 WHERE 阶段
。在这个阶段中,会根据 vt1 表的结果进行筛选过滤,得到虚拟表 vt2
。GROUP 和 HAVING 阶段
。在这个阶段中,实际上是在虚拟表 vt2 的基础上进行分组和分组过滤,得到中间的虚拟表 vt3
和 vt4
。SELECT 和 DISTINCT 阶段
。vt5-1
和 vt5-2
。ORDER BY 阶段
,得到虚拟表 vt6
。LIMIT 阶段
,得到最终的结果,对应的是虚拟表 vt7
。SELECT MAX(salary), MIN(salary), AVG(salary), SUM(salary)
FROM employees;
SELECT job_id, MAX(salary), MIN(salary), AVG(salary), SUM(salary)
FROM employees
GROUP BY job_id;
SELECT job_id, COUNT(*)
FROM employees
GROUP BY job_id;
SELECT MAX(salary), MIN(salary), MAX(salary) - MIN(salary) DIFFERENCE
FROM employees;
SELECT manager_id, MIN(salary)
FROM employees
WHERE manager_id IS NOT NULL
GROUP BY manager_id
HAVING MIN(salary) > 6000;
SELECT department_name, location_id, COUNT(employee_id), AVG(salary) avg_sal
FROM employees e RIGHT JOIN departments d
ON e.`department_id` = d.`department_id`
GROUP BY department_name, location_id
ORDER BY avg_sal DESC;
SELECT department_name,job_id,MIN(salary)
FROM departments d LEFT JOIN employees e
ON e.`department_id` = d.`department_id`
GROUP BY department_name,job_id
SELECT AVG(salary),job_id
FROM employees
GROUP BY job_id;
SELECT COUNT(*),location_id
FROM departments
GROUP BY location_id;
SELECT MAX(salary),department_id
FROM employees
WHERE email LIKE '%a%'
GROUP BY department_id;
SELECT AVG(salary),manager_id
FROM employees
WHERE commission_pct IS NOT NULL
GROUP BY manager_id;
#①查询每个部门的员工个数
SELECT COUNT(*),department_id
FROM employees
GROUP BY department_id;
#② 筛选刚才①结果
SELECT COUNT(*),department_id
FROM employees
GROUP BY department_id
HAVING COUNT(*)>5;
SELECT job_id,MAX(salary)
FROM employees
WHERE commission_pct IS NOT NULL
GROUP BY job_id
HAVING MAX(salary)>12000;
SELECT manager_id,MIN(salary)
FROM employees
GROUP BY manager_id
Where manager_id>102
HAVING MIN(salary)>5000;
SELECT job_id,MAX(salary) m
FROM employees
WHERE commission_pct IS NOT NULL
GROUP BY job_id
HAVING m>6000
ORDER BY m ;
SELECT MIN(salary),job_id,department_id
FROM employees
GROUP BY department_id,job_id
ORDER BY MIN(salary) DESC;
Das obige ist der detaillierte Inhalt vonLassen Sie uns über Aggregatfunktionen in MySQL sprechen und Paging-Abfragen üben!. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!