Heim >php教程 >PHP源码 >基于用户的推荐算法余弦相似性实现

基于用户的推荐算法余弦相似性实现

PHP中文网
PHP中文网Original
2016-05-25 17:10:031577Durchsuche

1. [文件]     cosine.py 

#-*- coding: utf-8 -*-
'''
Created on 2012-9-3

@author: Jekey
余弦相关性,如果数据稀疏,考虑使用该算法
'''
import codecs
from math import sqrt

users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, "Norah Jones": 4.5, "Phoenix": 5.0, "Slightly Stoopid": 1.5, "The Strokes": 2.5, "Vampire Weekend": 2.0},
         "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5, "Deadmau5": 4.0, "Phoenix": 2.0, "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
         "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0, "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5, "Slightly Stoopid": 1.0},
         "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0, "Deadmau5": 4.5, "Phoenix": 3.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 2.0},
         "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0, "Norah Jones": 4.0, "The Strokes": 4.0, "Vampire Weekend": 1.0},
         "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0, "Norah Jones": 5.0, "Phoenix": 5.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 4.0},
         "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0, "Norah Jones": 3.0, "Phoenix": 5.0, "Slightly Stoopid": 4.0, "The Strokes": 5.0},
         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0, "Phoenix": 4.0, "Slightly Stoopid": 2.5, "The Strokes": 3.0}
        }

#cosine 距离

def cosine(rate1,rate2):
    sum_xy = 0
    sum_x=0
    sum_y=0
    n=0  
    for key in rate1:
        if key in rate2:
            n+=1
            x=rate1[key]
            y=rate2[key]
            sum_xy += x*y
            sum_x +=x*x
            sum_y +=y*y
    #计算距离
    if n==0:
        return 0
    else:
        sx=pow(sum_x,1/2)
        sy=pow(sum_y,1/2)
        if sum_xy<>0:
            denominator=sx*sy/sum_xy
        else:
            denominator=0
    return denominator

#返回最近距离用户
def computeNearestNeighbor(username,users):
    distances = []
    for key in users:
        if key<>username:
            distance = cosine(users[username],users[key])
            distances.append((distance,key)) 
    distances.sort()          
    return distances
#推荐
def recommend(username,users):
    #获得最近用户的name
    nearest = computeNearestNeighbor(username,users)[0][1]
    recommendations =[]
    #得到最近用户的推荐列表
    neighborRatings = users[nearest]
    for key in neighborRatings:
        if not key in users[username]:
            recommendations.append((key,neighborRatings[key]))
    recommendations.sort(key=lambda rat:rat[1], reverse=True)
    return recommendations


    
    
if __name__ == &#39;__main__&#39;:
    print recommend(&#39;Hailey&#39;, users)

                               

                   

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn