Heim  >  Artikel  >  Backend-Entwicklung  >  Was sind die gemeinsamen Eigenschaften von Objekten der Pandas-Serie?

Was sind die gemeinsamen Eigenschaften von Objekten der Pandas-Serie?

青灯夜游
青灯夜游Original
2020-11-24 12:04:235984Durchsuche

Die Attribute des Serienobjekts sind: 1. Das Indexattribut, um den Index des Serienobjekts anzuzeigen. 2. Das Größenattribut, um die Anzahl der Elemente in der Serie anzuzeigen Konvertieren Sie das Datenformat in Pandas in die Form eines Arrays in Numpy. 4. dtype-Attribut. 5. name-Attribut.

Was sind die gemeinsamen Eigenschaften von Objekten der Pandas-Serie?

Gemeinsame Eigenschaften von Pandas-Serienobjekten:

Sehen Sie sich die zugehörigen Eigenschaften von Serien an, um den Typ und den Index der Sequenzelemente anzuzeigen oder zu ändern.

In [1]: import pandas as pd
In [2]: a=pd.Series([0,1,2,3,4,5])

1) Das Indexattribut

Das Indexattribut kann den Index des Serienobjekts anzeigen und auch direkt zugewiesen und geändert werden. Wir verwenden .loc und .iloc, um den Index zu ändern, und führen die gleiche Verarbeitung vorher und nachher durch. Bitte verstehen Sie den Unterschied zwischen loc und i loc.

In [3]: a.index
Out[3]: RangeIndex(start=0, stop=6, step=1)
In [4]: a.loc[1]
Out[4]: 1
In [5]: a.iloc[1]
Out[5]: 1

ändert den Index von a. Zu diesem Zeitpunkt nimmt loc[1] den Wert der vorletzten Position an, während iloc[1] weiterhin den Wert der absoluten Position 1 annimmt.

In [6]: a.index = [5,4,3,2,1,0]
In [7]: a.index
Out[7]: Int64Index([5, 4, 3, 2, 1, 0], dtype='int64')
In [8]: a.loc[1]
Out[8]: 4
In [9]: a.iloc[1]
Out[9]: 1

2) Größenattribut

Das Größenattribut kann verwendet werden, um die Anzahl der Elemente der Serie anzuzeigen.

In [10]: a.size  # 查看数据的个数
Out[10]: 6

3) Werteattribut

Das Werteattribut kann als Brücke zwischen Pandas und Numpy für die Zwischenkonvertierung verwendet werden. Das Werteattribut kann zum Konvertieren des Datenformats in Pandas verwendet werden Form eines Arrays in Numpy.

In [11]: a.values  # 查看返回值,返回的是一个Numpy中的array类型
Out[11]: array([0, 1, 2, 3, 4, 5], dtype=int64)

4) dtype-Attribut

Das dtype-Attribut wird zum Anzeigen des Datentyps verwendet. Anschließend kann der Datentyp über die astype-Methode geändert werden. Pandas unterstützt viele Datentypen, und wir müssen je nach Nutzungsszenario unterschiedliche Datentypen auswählen.

In [12]: a.dtype  # 查看数据类型
Out[12]: dtype('int64')
In [13]: a=a.astype('float64')
In [14]: a.dtype  # 查看数据类型

5) Namensattribut

Den Namen von Werten abrufen

6) index.name-Attribut

Den Namen des Index abrufen

Weitere programmierbezogene Kenntnisse finden Sie unter: Programmierung Lernen! !

Das obige ist der detaillierte Inhalt vonWas sind die gemeinsamen Eigenschaften von Objekten der Pandas-Serie?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn