Matplotlib ist eine hervorragende Python-2D-Zeichnungsbibliothek. Solange dem Format entsprechende Daten vorliegen, kann Matplotlib problemlos verschiedene hochwertige Datendiagramme wie Liniendiagramme, Histogramme und Streudiagramme erstellen.
Die Installation des Matplotlib-Pakets unterscheidet sich nicht von der Installation anderer Python-Pakete. Sie können es auch mit pip installieren.
Starten Sie das Befehlszeilenfenster und geben Sie den folgenden Befehl in das Befehlszeilenfenster ein: (Empfohlenes Lernen: Python-Video-Tutorial)
pip install matplotlib
The Der obige Befehl wird automatisch installiert. Die neueste Version des Matplotlib-Pakets wird automatisch installiert. Führen Sie den obigen Befehl aus. Sie können sehen, dass das Programm zuerst das Matplotlib-Paket herunterlädt und dann auffordert, dass das Matplotlib-Paket erfolgreich installiert wurde:
Installing collected packages: matplotlib Successfully installed matplotlib-2.2.3
Wenn das Befehlszeilenfenster dazu auffordert, dass der pip Der Befehl kann nicht gefunden werden. Sie können ihn auch übergeben. Der Python-Befehl führt das PIP-Modul aus, um das Matplotlib-Paket zu installieren.
Installieren Sie beispielsweise das Matplotlib-Paket über den folgenden Befehl:
python -m pip install matplotlib
Nach erfolgreicher Installation des Matplotlib-Pakets können Sie die Dokumentation des Matplotlib-Pakets über pydoc anzeigen. Geben Sie den folgenden Befehl in das Befehlszeilenfenster ein:
python -m pydoc -p 8899
Nachdem Sie den obigen Befehl ausgeführt haben, öffnen Sie den Browser, um die Seite http://localhost:8899/ anzuzeigen, die unter libsite-packages zu sehen ist im Python-Installationsverzeichnis Dokumentation für das Matplotlib-Paket, wie gezeigt.
Weitere technische Artikel zum Thema Python finden Sie in der Spalte Python-Tutorial, um mehr darüber zu erfahren!
Das obige ist der detaillierte Inhalt vonSo installieren Sie Matplotlib in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

PythonarraysSupportvariousoperationen: 1) SlicicingExtractsSubsets, 2) Anhang/Erweiterungen, 3) Einfügen von PlaceSelementsatspezifischePositionen, 4) Entfernen von Delettel, 5) Sortieren/ReversingChangesorder und 6) compredewlistenwlists basierte basierte, basierte Zonexistin

NumpyarraysaresessentialForApplicationsRequeeFoughnumericalComputations und Datamanipulation

UseanArray.ArrayoveralistinpythonwhendealingwithhomogenousData, Performance-CriticalCode, OrInterfacingwithCcode.1) HomogenousData: ArraysSavemoryWithtypedElements.2) Performance-CriticalCode: ArraySaveMoryWithtypedElements.2) Performance-CriticalCode: ArraysFerbetterPerPterPerProrMtorChorescomeChormericalcoricalomancomeChormericalicalomentorMentumscritorcorements.3) Interf

Nein, NOTALLLISTOPERATIONSARESURDEDBYARAYS UNDVICEVERSA.1) ArraysDonotsupportdynamicoperationslikeAppendorinStResizing, die impactSperformance.2) listsDonotguaranteConstantTimeComplexityfordirectAccesslikearraysDo.

ToaccesselementSinapythonlist, verwenden Indexing, Negativindexing, Slicing, Oriteration.1) IndexingStartsat0.2) NegativeIndexingAccessses aus der THEend.3) SlicingExtractSporions.4) itererationSforloopsorenumerate.AlwaySChEckLegthtoavoidIndexerror.

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft
