Drei Möglichkeiten, Gleichungssysteme in Python zu lösen:
Verwandte Empfehlungen: „Python-Video“
Numpy Das Gleichungssystem lösen
x + 2y = 3 4x + 5y = 6
Natürlich können wir die analytische Lösung manuell schreiben und dann eine Funktion schreiben, um sie zu lösen. Dabei verwenden wir eigentlich nur Python, um „numerische Berechnungen“ durchzuführen. Aber tatsächlich kann numpy.linalg.solve lineare Gleichungen direkt lösen.
Im Allgemeinen gehen wir davon aus, dass die linearen Gleichungen die Form Ax=b haben, wobei A die Koeffizientenmatrix und b ist eindimensional (auch n-dimensional Ja, das wird weiter unten erwähnt), x ist eine unbekannte Variable. Am Beispiel des oben genannten einfachsten linearen Gleichungssystems können wir numpy.linalg.solve verwenden, um so zu schreiben :
In [1]: import numpy as np ...: A = np.mat('1,2; 4,5') # 构造系数矩阵 A ...: b = np.mat('3,6').T # 构造转置矩阵 b (这里必须为列向量) ...: r = np.linalg.solve(A,b) # 调用 solve 函数求解 ...: print r ...: Out[1]: [[-1.] [ 2.]]
Was ist dann, wie bereits erwähnt, die „n-dimensionale“ Situation? Tatsächlich geht es darum, mehrere Sätze linearer Gleichungen zweier Variablen mit derselben Form gleichzeitig zu lösen. Wenn wir beispielsweise diese beiden Sätze gleichzeitig lösen möchten:
x + 2y = 3 4x + 5y = 6
und
x + 2y = 7 4x + 5y = 8
, wir können es so schreiben:
In [2]: import numpy as np ...: A = np.mat('1,2; 4,5') # 构造系数矩阵 A ...: b = np.array([[3,6], [7,8]]).T # 构造转置矩阵 b (这里必须为列向量), ...: 注意这里用的是 array ...: r = np.linalg.solve(A,b) # 调用 solve 函数求解 ...: print r ...: Out[2]: [[-1. -6.33333333] [ 2. 6.66666667]]
SciPy löst das System nichtlinearer Gleichungen
Im Allgemeinen müssen wir nur func und x0 verwenden .func ist eine von uns selbst erstellte Funktion, die das Gleichungssystem darstellt, das gelöst werden muss. Das linke Ende von (das rechte Ende ist 0) und x0 ist der gegebene Anfangswert.
Sehen wir uns a an Konkretes Beispiel zum Lösen:
x + 2y + 3z - 6 = 0 5 * (x ** 2) + 6 * (y ** 2) + 7 * (z ** 2) - 18 = 0 9 * (x ** 3) + 10 * (y ** 3) + 11 * (z ** 3) - 30 = 0
Es kann so geschrieben werden:
In [3]: from scipy.optimize import fsolve ...: ...: def func(i): ...: x, y, z = i[0], i[1], i[2] ...: return [ ...: x + 2 * y + 3 * z - 6, ...: 5 * (x ** 2) + 6 * (y ** 2) + 7 * (z ** 2) - 18, ...: 9 * (x ** 3) + 10 * (y ** 3) + 11 * (z ** 3) - 30 ...: ] ...: ...: r = fsolve(func,[0, 0, 0]) ...: print r ...: Out[3]: [ 1.00000001 0.99999998 1.00000001]
Natürlich kann SciPy auch zum Lösen linearer Gleichungssysteme verwendet werden, weil scipy.optimize.fsolve ist im Wesentlichen die Methode der kleinsten Quadrate, um die tatsächlichen Ergebnisse anzunähern.
SymPy löst Gleichungssysteme
Zum Beispiel, um ein Problem zu lösen:
x + 2 * (x ** 2) + 3 * (x ** 3) - 6 = 0
It ist direkt:
In [4]: from sympy import * ...: x = symbols('x') ...: solve(x + 2 * (x ** 2) + 3 * (x ** 3) - 6, x) Out[4]: [1, -5/6 - sqrt(47)*I/6, -5/6 + sqrt(47)*I/6]
Das obige ist der detaillierte Inhalt vonDrei Möglichkeiten, Gleichungen in Python zu lösen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.

Python eignet sich für eine schnelle Entwicklung und Datenverarbeitung, während C für hohe Leistung und zugrunde liegende Kontrolle geeignet ist. 1) Python ist einfach zu bedienen, mit prägnanter Syntax, und eignet sich für Datenwissenschaft und Webentwicklung. 2) C hat eine hohe Leistung und eine genaue Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

Die Zeit, die zum Erlernen von Python erforderlich ist, variiert von Person zu Person, hauptsächlich von früheren Programmiererfahrungen, Lernmotivation, Lernressourcen und -methoden und Lernrhythmus. Setzen Sie realistische Lernziele und lernen Sie durch praktische Projekte am besten.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.