Die drei Eckpfeiler der künstlichen Intelligenz sind Algorithmen, Daten und Rechenleistung, die sehr wichtig sind.
Je nach verschiedenen Modelltrainingsmethoden kann es in überwachtes Lernen (Supervised Learning), unüberwachtes Lernen (Unsupervised Learning) und halbüberwachtes Lernen unterteilt werden ( Halbüberwachtes Lernen) und verstärkendes Lernen (Reinforcement Learning) sind vier Hauptkategorien.
Übliche überwachte Lernalgorithmen umfassen die folgenden Kategorien: (Empfohlenes Lernen: PHP-Video-Tutorial)
(1) Künstliches neuronales Netzwerk (Artificial Neural Network) Kategorie: Backpropagation, Boltzmann-Maschine, Convolutional Neural Network, Hopfield Network, Multilayer Perceptron, Radial Basis Function Network (RBFN), Restricted Boltzmann Machine (Restricted Boltzmann Machine), Recurrent Neural Network (RNN), Self-Organizing Map (SOM), Spiking Neural Network usw.
(2) Bayesin: Naive Bayes, Gaußsche Naive Bayes, Multinomiale Naive Bayes, Durchschnitt – Averaged One-Dependence Estimators (AODE)
Bayesian Belief Network (BBN), Bayesian Network (BN) , usw.
(3) Entscheidungsbaumklasse (Entscheidungsbaum): Klassifizierungs- und Regressionsbaum (CART), Iterative Dichotomiser3 (ID3), C4.5-Algorithmus (C4.5-Algorithmus), C5.0-Algorithmus, Chi-Quadrat Automatische Interaktionserkennung (CHAID), Decision Stump, ID3-Algorithmus, Random Forest, SLIQ (Supervised Learning in Quest) usw.
(4) Kategorie der linearen Klassifikatoren: Fisher's Linear Discriminant
Lineare Regression, logistische Regression, multinomiale logische Regression (multionmiale logistische Regression), naiver Bayes-Klassifikator (naiver Bayes-Klassifikator), Wahrnehmung (Wahrnehmung) , Support Vector Machine (Support Vector Machine) usw.
Zu den gängigen Algorithmen für unbeaufsichtigtes Lernen gehören:
(1) Künstliches neuronales Netzwerk (Künstliches neuronales Netzwerk): Generative Adversarial Networks (GAN), Feedforward Neural Network (Feedforward Neural Network), Logic Learning Machine ( Logic Learning Machine), selbstorganisierende Karte (selbstorganisierende Karte) usw.
(2) Lernkategorie für Assoziationsregeln: Apriori-Algorithmus, Eclat-Algorithmus, FP-Wachstumsalgorithmus usw.
(3) Hierarchisches Clustering: Single-Linkage-Clustering, konzeptionelles Clustering usw.
(4) Clusteranalyse (Clusteranalyse): BIRCH-Algorithmus, DBSCAN-Algorithmus, Erwartungsmaximierung (EM), Fuzzy-Clustering (Fuzzy Clustering), K-Mittelwert-Algorithmus, K-Mittelwert-Clustering-Klasse (K-Mittelwert). Clustering), K-Median-Clustering, Mean-Shift-Algorithmus (Mean-Shift), OPTICS-Algorithmus usw.
(5) Kategorie der Anomalieerkennung (Anomalieerkennung): K-Nearest Neighbor (KNN)-Algorithmus, lokaler Ausreißerfaktor-Algorithmus (Local Outlier Factor, LOF) usw.
Gemeinsame halbüberwachte Lernalgorithmen umfassen:
Generative Modelle, Low-Density-Separation, graphbasierte Methoden -basierte Methoden), gemeinsames Training (Co-Training) , usw.
Zu den gängigen Reinforcement-Learning-Algorithmen gehören:
Q-Learning, State-Action-Reward-State-Action-Reward-State-Action, SARSA), DQN (Deep Q-Netzwerk), Richtliniengradienten, modellbasiertes RL, zeitlich differenzielles Lernen usw.
Zu den gängigen Deep-Learning-Algorithmen gehören:
Deep Belief Machines, Deep Convolutional Neural Networks und Deep Recurrent Neural Networks Network (Deep Recurrent Neural Network), hierarchisches zeitliches Gedächtnis ( HTM), Deep Boltzmann Machine (DBM), Stacked Autoencoder (Stacked Autoencoder), Generative Adversarial Networks) usw.
Weitere technische Artikel zum Thema PHP finden Sie in der Spalte PHP-Grafik-Tutorial, um mehr darüber zu erfahren!
Das obige ist der detaillierte Inhalt vonEinführung in Algorithmen der künstlichen Intelligenz. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool
